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Abstract

We establish a KMT coupling for the sequential empirical process and the Kiefer–Müller process. The processes are in
functionsf from a Hölder classH, but the supremum overf ∈H is taken outside the probability. Compared to the coupling in s
norm, this allows for larger functional classesH. The result is useful for proving asymptotic equivalence of certain nonparam
statistical experiments.To cite this article: M. Jähnisch, M. Nussbaum, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une construction hongroise fonctionnelle pour le processus empirique séquentiel. Nous établissons un couplage KMT po
le processus empirique séquentiel et le processus de Kiefer–Müller. Les processus sont indexés par des fonctionsf appartenant à
une classe de HölderH, mais le supremum est pris en dehors de la probabilité. Comparé au couplage en norme sup, ceci p
classes de fonctionsH plus larges. Le résultat peut être utilisé pour démontrer l’équivalence asymptotique de certaines exp
statistiques non-paramétriques.Pour citer cet article : M. Jähnisch, M. Nussbaum, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Let x1, x2, . . . be a sequence of independent random variables being uniformly distributed on the unit interv
process

Ĝn(s, t) := 1√
n

[ns]∑
i=1

(
1[0,t](xi) − t

)
, (s, t) ∈ [0,1]2

is called the sequential empirical process. It is well known that an invariance principle holds for this processK

be the Kiefer–Müller process on the unit square, defined as

K(s, t) = W(s, t) − tW(s,1), (s, t) ∈ [0,1]2,
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whereW is the Brownian sheet, i.e. the continuous centered Gaussian process with covariance function

EW(s1, t1)W(s2, t2) = (s1 ∧ s2)(t1 ∧ t2).

Then we have convergence in distribution

Ĝn �⇒ K asn → ∞
(cp. [13], Theorem 1, p. 131).

According to the principle ‘nearby variables for nearby laws’ (cf. [3], Section 11.6), one can expect a
coupling result to hold for these processes. Indeed the following result is due to Komlós, Major and Tusnády (
Theorem 4, p. 114). For everyn ∈ N, there is a probability space on which there exist versions of the processĜn

andK such that for allx � 0 we have:

P
(
n1/2 sup

s∈{i/n, i=1,...,n}, t∈[0,1]
∣∣Ĝn(s, t) − K(s, t)

∣∣ � (C logn + x) logn
)

� Lexp(−λx),

whereC, L andλ are positive absolute constants.
A local refinement along with a specification of the constants has been obtained by Castelle and

Bonvalot [2]. These authors also present a complete proof of the above theorem based on a quantile ineq
hypergeometric distributions. This result is an analog of the quantile inequality for the symmetric binomial d
tion known as Tusnády’s lemma which was proved in detail by Bretagnolle and Massart [1].

Similarly to [2], our starting point in this note is the quantile inequality for the hypergeometric distributio
we are aiming at a different kind of coupling result. Firstly, we consider functional versions of the processes
functionsf ∈ H, whereH is the class of real valued functions on the unit square, let:

Ĝn(f ) := 1√
n

n∑
i=1

(
f (i/n, xi) −

1∫
0

f (i/n, v)dv

)
. (1)

Furthermore, letBi , i = 1, . . . , n, be a set of independent standard Brownian bridges and define

Kn(f ) :=
n∑

i=1

1∫
0

f (i/n, v)dBi(v).

Since the Kiefer–Müller processK(s, t) with the first argument restricted to{i/n, i = 1, . . . , n} can be represented

K(s, t) = n−1/2
ns∑
i=1

Bi(t), s ∈ {i/n, i = 1, . . . , n}, t ∈ [0,1],

it is clear that the processn−1/2Kn(f ), f ∈ H is a discretized functional version ofK . We will call Kn(f ) the dis-
cretized Kiefer–Müller process, bearing in mind that rigorously the term is appropriate forn−1/2Kn(f ). The process
Ĝn(f ) indexed byf ∈ H will be called the sequential empirical process.

Secondly, the supremum will not be taken inside the probability, as in the classical KMT result (cited abo
refinements by Castelle and Laurent-Bonvalot [2], but it will be taken outside, with the same type of exponenti
bound. A detailed discussion of the statistical motivation for such a result can be found in [4]; it will also be
touched upon below.

Let H(1,L) be the class of functions on the unit square having Lipschitz norm less or equal toL and being
uniformly bounded. More precisely

H(1,L) = {
f : [0,1]2 �→ R:

∣∣f (x) − f (y)
∣∣ � L‖x − y‖, ∣∣f (x)

∣∣ � L, x, y ∈ [0,1]2}.
Theorem 1. For every n � 2, there is a probability space on which there exist versions of the sequential empirical
process and the discretized Kiefer–Müller process, such that for every L > 0 and all x � 0:

sup
f ∈H(1,L)

P
(∣∣Ĝn(f ) − n−1/2Kn(f )

∣∣ � n−1/2 log7(n) x
)
� C1 exp(−C2x),

where C1 and C2 are positive constants, depending only on L.
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The proof is in the thesis [7]. This result has an application in the theory of statistical experiments, where asy
equivalence is understood in the sense of Le Cam’s∆-distance. It is preferable for such applications that the suprem
be taken outside the probability. Indeed, consider two sequences of experimentsEn andGn given by families of
probability measuresP n

f andQn
f defined possibly on different sample spaces but indexed both byf ∈ Σ . Assume

that for somef0 ∈ Σ , all measuresP n
f are absolutely continuous with respect toP n

f0
, and the same forQn

f andQn
f0

,

respectively. If there exist versions d̃P n
f /dP̃ n

f0
and d̃Qn

f /dQ̃n
f0

of the likelihood processes of the experiments on so
common probability space(Ωn,Fn,Pn), then one can estimate the∆-distance between the experiments as follow

∆2(En,Gn) �
√

2 sup
f ∈Σ

EPn

(√
dP̃ n

f /dP̃ n
f0

−
√

dQ̃n
f /dQ̃n

f0

)2
.

More details can be found in [11]. The above theorem is used to obtain such a coupling for an experiment
independent non-identically distributed observations and an accompanying Gaussian one. The correspondin
asymptotic equivalence of experiments can be found in the companion paper to the present note [8] and the

The type of coupling result discussed here was first studied by Koltchinskii [9]. This author considered fun
versions of the empirical process and the Brownian bridge and established an analog of the above theorem f
of functions defined on the unit interval. This result was instrumental for proving asymptotic equivalence of
ments in [11]. Our theorem can be seen as an extension where the uniform empirical process is replaced by th
sequential empirical process and functions are defined on the unit square. In [9] and [12] the coupling was
ried on to a supremum over functional classes inside the probability, in the spirit of the original KMT result, b
development remains outside the scope of the present paper. We note only that the function classH(1,L) on the unit
square is well known not to be Donsker, and hence there is no coupling (or sequence of couplings) in which

sup
f ∈H(1,L)

∣∣Ĝn(f ) − n−1/2Kn(f )
∣∣

tends to zero in probability.
As to the type of coupling established in the theorem above, we note that a related result has been ob

Grama and Nussbaum [4]. These authors consider the partial sum process indexed by functionsh on the unit interval

Ŝn(h) := 1√
n

n∑
i=1

h(i/n)yi,

whereyi are independent centered random variables. Note that settingf (s, t) = h(s)t in (1) we obtain the partial sum
process for centered uniformsyi = xi − 1/2 but the paper [4] covers more generalyi . The corresponding results o
asymptotic equivalence of experiments can be found in [5] and [6].
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