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Abstract

We prove that every Cantor aperiodic system is homeomorphic to the Vershik map acting on the space of infinite pa
ordered Bratteli diagram and give several corollaries of this result.To cite this article: K. Medynets, C. R. Acad. Sci. Paris, Ser. I
342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Les systèmes de Cantor apériodiques et les diagrammes de Bratteli. Nous démontrons que chaque système de Cantor ap
dique est homéomorphe à une application de Vershik agissant dans l’espace de chemins infinis d’un diagramme de Bratt
et donnons quelques applications de ce résultat.Pour citer cet article : K. Medynets, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Every Cantor minimal system can be represented as the Vershik map acting on an ordered Bratteli diagram
representation turns out to be a powerful tool in the study of orbit equivalence of Cantor minimal systems [4–6
goal of this Note is to find a similar realization of every aperiodic homeomorphism of a Cantor set and give
applications of this result.

We say that(X,T ) is a Cantor aperiodic systemif X is a Cantor set andT is a homeomorphism ofX with-
out periodic points. By aT -tower ξ , we mean a family of disjoint clopen sets{B,T B, . . . , T n−1B}. The setB is
called thebaseof ξ and denoted byB(ξ); the numbern is called theheightof ξ and denoted byh(ξ). A clopen
partition Ξ = {ξ1, . . . , ξm} of X is called aKakutani–Rokhlin(K–R) partition if all theξi ’s are disjointT -towers.
The sets{T iB(ξ): ξ ∈ Ξ, i = 1, . . . , h(ξ) − 1} are calledatomsof Ξ . We say that a K–R partitionΞ2 refinesa
K–R partitionΞ1 if every atom ofΞ1 is a union of some atoms ofΞ2. For a K–R partitionΞ = {ξ1, . . . , ξn}, set
B(Ξ) = ⋃

1�i�n B(ξi).
Let (X,T ) be a Cantor aperiodic system and letA be a clopen set. We say thatA is a completeT -sectionif A

meets everyT -orbit at least once; a pointx ∈ A is calledrecurrentwith respect toA if there existsn ∈ N such that
T nx ∈ A. If a clopen completeT -sectionA consists of recurrent points, then the function of first returnnA(x) =
min{n ∈ N: T nx ∈ A} determines a K–R partitionΞ of X such thatB(Ξ) = A.
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2. Bratteli diagrams

In this section, we show that every Cantor aperiodic system is homeomorphic to the Vershik map acting
space of infinite paths of an ordered Bratteli diagram.

Theorem 2.1. Let (X,T ) be a Cantor aperiodic system. There exists a sequence of K–R partitions{Ξn} of X such
that for all n � 1: (i) Ξn+1 refinesΞn; (ii) hn+1 > hn, wherehn = min{h(ξ): ξ ∈ Ξn}; (iii) B(Ξn) ⊃ B(Ξn+1); (iv)
the sequence{Ξn} generates the clopen topology ofX.

The proof is obtained by consequent application of the following lemma. Note that part (ii) was originally p
in [1].

Lemma 2.2. Let (X,T ) be a Cantor aperiodic system.
(i) If A is a clopen completeT -section, thenA consists of recurrent points.
(ii) For everyn > 0, there exists a clopen K–R partitionΞ = {ξ1, . . . , ξkn} of X such that the height of eve

T -towerh(ξi) is at leastn.

Proof. Since statement (ii) is principal, we sketch its proof. For everyx ∈ X, find a clopen neighborhoodUx such
thatT iUx ∩ Ux = ∅ for i = 1, . . . , n − 1. Choose a finite subcoverX = U1 ∪ · · · ∪ Uk , whereUi = Uxi

, i = 1, . . . , k.
SetA1 = U1 andAm = Um − ⋃n−1

j=−(n−1) T
j (A1 ∪ · · · ∪ Am−1), m = 2, . . . , k. Notice thatA = A1 ∪ · · · ∪ Ak is a

clopen completeT -section. By (i), the setA consists of recurrent points. To findΞ , we apply the function of firs
return toA. �

Let (X,T ) be a Cantor aperiodic system; we say that a closed setY ⊂ X is abasic setif every clopen neighborhoo
of Y is a completeT -section andY meets everyT -orbit at most once. If a sequence of K–R partitions{Ξn} satisfies
the conditions of Theorem 2.1, thenY = ⋂

n B(Ξn) is a basic set. Thus,

Corollary 2.3. Every Cantor aperiodic system has a basic set.

For the notions related to ordered Bratteli diagrams we refer the reader to [4,7]. We recall only the defin
the Vershik map: letB = (V ,E,�) be an ordered Bratteli diagram with the path spaceXB and letXmax, Xmin be the
sets of all maximal and minimal paths, respectively. We say that a homeomorphismϕB :XB → XB is aVershik map
if ϕB(Xmax) = Xmin and if x = (x1, x2, . . .) /∈ Xmax, thenϕ(x1, x2, . . .) = (x0

1, . . . , x0
k−1, xk, xk+1, xk+2, . . .), where

k = min{n � 1: xn is not maximal}, xk is the successor ofxk , and(x0
1, . . . , x0

k−1) is the minimal path connecting th
top vertexv0 with the source ofxk . We call the system(XB,ϕB) a Bratteli–Vershik model.

Let Y be a basic set for a Cantor aperiodic system(X,T ). Take a sequence of K–R partitions{Ξn} satisfying the
conditions of Theorem 2.1 such thatY = ⋂

n B(Ξn). Applying the method used in [7, Section 4] to{Ξn}, we prove:

Theorem 2.4. Let (X,T ,Y ) be a Cantor aperiodic system with a basic setY . There exists an ordered Bratteli diagra
B = (V ,E,�) such that(X,T ) is homeomorphic to a Bratteli–Vershik model(XB,ϕB) and the homeomorphis
complementing the conjugacy betweenT andϕB maps the basic setY onto the set of all minimal paths ofXB . The
equivalence class(generated by the isomorphism and telescoping) of the diagramB does not depend on a choi
of {Ξn} with

⋂
n B(Ξn) = Y .

It is interesting to describe the variety of Bratteli diagrams corresponding to Cantor aperiodic systems.
words, the question is whether a given Bratteli diagram has an ordering such that the Vershik map is a wel
aperiodic homeomorphism. For minimal homeomorphisms the problem is solved as follows: every Cantor
system is homeomorphic to a Bratteli–Vershik model acting on asimpleBratteli diagram andvice versaevery simple
Bratteli diagram can be endowed with an ordering so that the Vershik map is well-defined and minimal [
following proposition gives a particular solution of the above problem.
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Proposition 2.5. Let B = (V ,E) be a Bratteli diagram such that every cofinal class is infinite and letG be a locally
finite group generating the cofinal equivalence relation on the path space ofB. SupposeG has only one minima
component. Then there exists an ordering onB that admits the well-defined aperiodic Vershik map.

Notice that if the groupG in Proposition 2.5 has two minimal components, then a continuous Vershik map
not exist. For example, any ordering on the following diagram does not define a continuous Vershik map.

3. Applications

Having represented a Cantor aperiodic system as the Vershik map on an ordered Bratteli diagram, we can
technique of Bratteli diagrams developed in [4–7] to explore properties of the system. In this section, we ge
some results of [4,5] to aperiodic homeomorphisms with a finite number of minimal components.

Given a Cantor aperiodic system(X,T ), denote byCT the set of minimalT -components and setN (T ) =
min{card(Y ): Y is a basic set}.

Proposition 3.1. (i) N (T ) is an invariant of orbit equivalence.(ii) card(CT ) � N (T ). (iii) If card(CT ) < ∞, then
card(CT ) = N (T ).

The following proposition shows that Bratteli diagrams associated to aperiodic homeomorphisms with
number of minimal components can be chosen to be ‘almost’ simple.

Proposition 3.2. Let (X,T ) be a Cantor aperiodic system such thatN (T ) < ∞. Then(X,T ) can be represented a
the Vershik map acting on the path space of an ordered diagramB so thatB has exactlyN (T ) simple invariant(with
respect to the cofinal equivalence relation) subdiagrams and each of these subdiagrams has a unique maxima
minimal path.

Example 1. Consider the substitutional system(Xσ ,Tσ ) given by σ(a) = abab, σ(b) = abb, andσ(c) = accb.
Notice that(Xσ ,Tσ ) is a non-minimal system withN (T ) = 1. Using the ideas from [3], one can prove thatΞn =
{T i

σ σn([w]): w ∈ {a, b, c}, 0 � i < |σn([w])|}, n � 1, are K–R partitions satisfying the conditions of Theorem
Thus,(Xσ ,Tσ ) is isomorphic to a Vershik map of the stationary diagram:

Clearly, this Bratteli diagram is non-simple and has only one simple invariant subdiagram consisting of pa
never go throughc. See also Proposition 2.5.

Proposition 3.2 allows us to generalize some results proved earlier for Cantor minimal systems to the
aperiodic homeomorphisms with a finite number of minimal components.

The following proposition generalizes Theorem 4.18 of [5]. Recall that an equivalence relation on a Ca
is said to beaffable if it is homeomorphic to the cofinal equivalence relation on a Bratteli diagram (for the d
see [5]).

Proposition 3.3. If (X,T ) is a Cantor aperiodic system such thatN (T ) < ∞, then the equivalence relationRT onX

generated by the orbits ofT is affable.
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Given two equivalence relationsE andF on Cantor setsX andY respectively, we say thatE is embeddable intoF ,
in symbolsE 	 F , if there is a continuous injectionf :X → Y such thatxEy iff f (x)Ff (y). And E andF arebi-
embeddableif E 	 F andF 	 E. An equivalence relation is calledaperiodicif each equivalence class is infinite. T
notion of bi-embeddability was originally considered in [2] for countable Borel equivalence relations.

Theorem 3.4. Any two aperiodic affable equivalence relations are bi-embeddable.

The idea of the proof. If we have two aperiodic Bratteli diagramsB1 andB2, i.e. every cofinal class is infinite, the
by appropriate telescoping and microscoping (for the definitions see [4]) ofB1, we can seeB2 as a subdiagram ofB1
and vice versa. �

Consider a Cantor aperiodic system(X,T ) with a basic setY . Let C(X,Z) be the group of continuous function
from X to Z. SetC(X|Y,Z) = {f ∈ C(X,Z): f |Y ≡ const} and ∂T f = f ◦ T − f for f ∈ C(X,Z). Denote by
K0(X|Y,T ) the groupC(X,Z)/∂T C(X|Y,Z), which is called arelative dimension groupof (X,T ,Y ) [6]. Denote by
K0(X|Y,T )+ andu0 the image of the positive cone{f ∈ C(X,Z): f � 0} and 1 in the quotient groupK0(X|Y,T ),
respectively.

Remark 1. If a basic setY is a singleton, thenK0(X|Y,T ) = C(X,Z)/∂T C(X,Z) and we denote this group b
K0(X,T ).

The proof of the following proposition is based on Proposition 5.2 of [6].

Proposition 3.5. Let (X,T ) be a Cantor aperiodic system with a basic setY .
(i) The relative dimension group(K0(X|Y,T ),K0(X|Y,T )+) is an ordered group andu0 is an order unit.
(ii) For every Bratteli diagramB = (V ,E) associated to the basic setY , the dimension groupK0(V ,E) of the

diagramB (for the definition see[4,7]) is isomorphic(as an ordered dimension group with order unit) to K0(X|Y,T ).

The correspondence between the dimension group of a Cantor dynamical system and the dimension gro
associated Bratteli diagram allows us to generalize Theorem 2.1 of [4].

Corollary 3.6. Let (X,T ) and (Y,S) be Cantor aperiodic systems such thatN (T ) = N (S) = 1. ThenT andS are
strong orbit equivalent if and only ifK0(X,T ) andK0(Y,S) are isomorphic(as ordered dimension groups with ord
units).

The sketch of the proof. We notice only that ifK0(X,T ) ∼= K0(Y,S), then the unordered Bratteli diagrams co
structed for homeomorphismsT andS by single-point basic sets are equivalent. To finish the proof we appl
arguments of Theorem 1.1 of [6] or Theorem 2.1. of [4].�
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