
1/

ce. It is
at this is
rface.

iques
tions peut
r la surface
dard.

un

Le
induit.
-

C. R. Acad. Sci. Paris, Ser. I 342 (2006) 37–42
http://france.elsevier.com/direct/CRASS

Differential Topology

A note on logarithmic transformations on the Hopf surface

Raphael Zentner

Laboratoire d’analyse, de topologie, et de probabilités, université de Provence, 13013 Marseille, France

Received 7 March 2005; accepted after revision 25 October 2005

Available online 29 November 2005

Presented by Étienne Ghys

Abstract

In this note we study logarithmic transformations in the sense of differential topology on two fibers of the Hopf surfa
known that such transformations are susceptible to yield exotic smooth structures on 4-manifolds. We will show here th
not the case for the Hopf surface, all integer homology Hopf surfaces we obtain are diffeomorphic to the standard Hopf suTo
cite this article: R. Zentner, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Transformations logarithmiques sur la surface de Hopf.Dans cette note nous étudions des transformations logarithm
au sens de la topologie différentielle le long de deux fibres de la surface de Hopf. Il est connu que ce type de transforma
donner lieu à des structures différentiables exotiques sur les 4-variétés. Nous allons montrer que ceci n’est pas le cas pou
de Hopf. En effet, les surfaces de Hopf homologiques que nous obtenons sont difféomorphes à la surface de Hopf stanPour
citer cet article : R. Zentner, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Définition 0.1. Soit π :X → Σ une fibration elliptique. On dit que la 4-variétéX′ est obtenue à partir deX par
une transformation logarithmique sur la fibre régulièreF si X′ est le résultat de l’opération suivante : On enlève
voisinage tubulaireνF deF et on colleT 2 × D2 àX − νF par un difféomorphismeϕ :T 2 × S1 → ∂νF .

La valeur absolue du degré deπ |∂νF ◦ ϕ|pt×S1 s’appelle la multiplicité de la transformation logarithmique.
difféomorphismeϕ est déterminé, à isotopie près, par l’isomorphisme entre les groupes fondamentaux qu’il
Considérons la 4-variétéX′ obtenue à partir de la surface de HopfX = S1 × S3 → S2 par transformations logarith
miquesϕ± sur deux fibresF±. Si ϕ+ (resp.ϕ−) est de direction(a, b) (resp.(c, d)) et de multiplicitép (resp.q),
alorsX′ aura pour groupe fondamental

π1(X
′) = 〈

α,β, γ | [α,β] = 1, [α,γ ] = 1, [β,γ ] = 1, αaβb
(
αγ −1)p = 1, αcβdγ q = 1

〉
.
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1631-073X/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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On trouve donc queπ1(X
′) ∼= Z⊕Z/µZ, oùµ est le plus grand commun diviseur de tous les mineurs d’ordre 2 d

matrice de présentation deπ1(X
′). Pour de nombreux choix possiblesµ sera égal à 1.

Notons maintenant parXψ := (T 2 × D2) ∪ψ (T 2 × D2) la 4-variéte qu’on obtient en collantT 2 × D2 àT 2 × D2

via le difféomorphismeψ entre leurs bords, et soitψ∗ l’isomorphisme entre groupes fondamentaux induit. N
obtenons ainsi la variétéX′ via le recollement(

T 2 × D2) ∪
ϕ−1+

(
T 2 × A2) ∪ζ

(
T 2 × A2) ∪ϕ−

(
T 2 × D2) ∼= X

ϕ−1+ ◦ζ◦ϕ− .

Le difféomorphismeζ donne la surface de Hopf standard :Xζ = S1 ×S3. En considérant l’automorphisme de grou
fondamental induit parϕ−1+ ◦ ζ ◦ ϕ− on peut voir si la variétéX′ est une surface de Hopf homologique.

Théorème 0.2.Supposons que la variétéXψ est une surface de Hopf homologique. AlorsXψ est difféomorphe à la
surface de Hopf standardXζ = S1 × S3.

Corollaire 0.3. Si deux transformations logarithmiques le long de deux fibres de la surface de Hopf résulte
une surface de Hopf homologique, alors cette variété est difféomorphe à la surface de Hopf standardS1 × S3.

La démonstration du Théorème 0.2 utilise le fait que les variétésXψ et Xψt◦ψ◦ψb
sont difféomorphes, siψt et

ψb sont des difféomorphismes deT 2 × S1 qui se prolongent en tant que difféomorphisme deT 2 × D2. Ceci perme
certaines opérations sur les lignes et les colonnes deψ∗ ∈ Sl(3,Z). On obtient ainsi une certaine forme standard p
ψ∗ si Xψ est une surface de Hopf homologique. Ces possibilités pourψ∗ se distinguent par des élements de Sl(2,Z).
En utilisant un argument sur l’attachement de 2-anses, on observe finalement que toutes ces matricesψ∗ induisent des
variétés difféomorphes.

1. Introduction

The (standard) Hopf surfaceS1 × S3 fibers over the 2-sphereS2 via the map obtained by composing the Ho
fibration S3 → S2 with the projection on the second factor. Any fibre is diffeomorphic to the torusT 2 and there
are no singular fibers, because this map is a submersion. It is a natural problem to study the effect of log
transformations on two fibres in this case. Indeed, this operation was successfully used in the case of the K
to construct exotic K3 manifolds as well as on other elliptic fibrations. These results have been obtained usin
theoretical methods, which only apply for manifolds withb+

2 � 1 [1,3,8]. Note that all K3-surfaces are diffeomorp
4-manifolds, and there exist complex K3-surfaces which are elliptic fibrations. In the case of the K3-surf
resulting manifolds depend only on the multiplicities of the logarithmic transformations, but in our conside
they depend on some additional parameters as well.

For 4-manifolds with the rational homology of a Hopf surface the existing gauge theoretical methods do no
On the other hand it is a fundamental and open problem whether 4-manifolds withb2 � 4 [9] (like the 4-sphere
and the Hopf surface) do admit exotic structures. In the complex geometric framework, exotic Hopf surface
exist, for by a result of Kodaira [6] every complex surface which is homeomorphic toS1 × S3 is a primary Hopf
surface, so it is diffeomorphic toS1 × S3. Complex surfaces which are rational homology Hopf surfaces have
classified in [2] using logarithmic transformations. Further results about elliptic surfaces in the class of c
surfaces can be found in [3]; in particular, from Chapter 2.7 therein it follows that elliptic surfaces of Euler n
zero with Abelian fundamental group, and which are integer homology Hopf surfaces, are the standard Hopf
Our considerations here, however, are purely topological in nature and the logarithmic transformations consid
more general than the complex-geometric ones. In particular, logarithmic transformations with multiplicity z
not arise in the complex geometric setting, and may even result in manifolds not admitting any complex stru
all [4].

We will first calculate the fundamental group of the manifold obtained by two logarithmic transformations
will turn out, in many cases, including multiplicity 0, the resulting manifold will have the same fundamental gr
the Hopf surface. Since the Euler characteristic is invariant under logarithmic transformations, we will obtain
fold having the same (integer) homology as the Hopf surface. We will then describe a procedure to construct
manifolds by gluing two copies ofT 2 × D2 via a diffeomorphism between their boundaries. Using diffeomorph
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of T 2 × S1 which extend overT 2 × D2, we will be able to show that manifolds given by different gluing diffeom
phisms may still be diffeomorphic. Using this observation, we will find a certain standard form for every hom
Hopf surface obtained by this gluing method. The possible standard forms are determined by elements in(2,Z).
Finally, using a handlebody-theoretical argument [7], we prove that this parameter does not affect the diffeom
type.

2. Logarithmic transformations applied to Hopf surfaces and resulting fundamental group

Definition 2.1.Let π :X → Σ be an elliptic fibration. We say that a 4-manifoldX′ is obtained fromX by logarithmic
transformation on a regular fibreF of π if X′ is obtained fromX through the following construction: We cut o
a regular neighbourhoodνF of F and we glue in aT 2 × D2 via an arbitrary orientation-reversing diffeomorphis
ϕ :T 2 × S1 → ∂νF . The absolute value of the degree ofπ |∂νF ◦ ϕ|pt×S1 is called the multiplicity of the logarithmi
transformation [4].

The diffeomorphismϕ is determined, up to isotopy, by its induced isomorphism of fundamental groups,
itself, after the choice of some bases, is determined by a matrix in Gl(3,Z). Alternatively, we fix one such diffeomo
phism, which can be used to identify∂νF with T 2 × S1. Then any other is determined by a self-diffeomorphism
T 2 × S1, and these diffeomorphisms are given, up to isotopy, by elements in Sl(3,Z).

We will first give a gluing description of the Hopf-surfaceX = S1 × S3 which will turn out useful in what follows
For this we shall first describeS3 as two solid toriS1 × D2 glued together. The two closed discsD2 will turn out to
be the northern respectively southern hemisphere under the Hopf fibrationS3 → S2. Indeed,S3 can be seen as th
following set:

S3 = {
(z,w) ∈ C

2 | |z|2 + |w|2 = 2
}
.

The Hopf fibration is then given by the mapS3 → CP
1 given by(z,w) 	→ [z : w], andCP

1 is diffeomorphic toS2.
DefineS3+ to be the set of elements(z,w) such that 0� |w|2 � 1, andS3− to be the set of elements(z,w) with
0� |z|2 � 1. Then there are diffeomorphisms

S3+
f+−−→ S1 × D2; (z,w)

f+	−→
(

z

|z| ,
w

z

)
, and S3−

f−−−→ S1 × D2; (z,w)
f−	−→

(
w

|w| ,
z

w

)
.

When we restrictf+ ◦ f −1− to the boundary, then the map∂(S1 × D2) → ∂(S1 × D2) is given by the formula

f+ ◦ f −1− (u, ξ) = (uξ, ξ̄ ).

We extend this latter map to the trivialS1 factor by the identity, so that we get a mapζ :T 2 × ∂D2 → T 2 × ∂D2,
(u, v, ξ) 	→ (uξ, v, ξ̄ ). Here and further down(u, v) denotes an element in the fibreT 2 = S1 × S1 ⊆ C × C, whereas
ξ denotes an element in the baseD2 ⊆ C. We then get the description of the Hopf surface as a gluing

X = (
T 2 × D2) ∪ζ

(
T 2 × D2). (1)

Now let us consider the manifoldX′ obtained from the Hopf surface when performing logarithmic transforma
on two fibres, say on the fibreF+ over the north polex+ := [1 : 0] and the fibreF− over the south polex− = [0 : 1],
associated with diffeomorphismsϕ±. There are natural identifications of∂(X − νF±) with the ‘inner’ boundary of
T 2 × (D2 − D̊2

1/2) according to the decomposition (1). Therefore the orientation-reversing diffeomorphismsϕ± can

be seen as an orientation-preserving diffeomorphism ofT 2 × S1, because the above ‘inner’ boundary is with oppo
orientation to the ‘outer’ boundary. Let us denote byX± the two manifolds(T 2 × (D2 − D̊2

1/2))∪ϕ± (T 2 ×D2). What
a gluing of two manifold along the boundary really means is actually an identification of collar neighbourhood
boundaries of the two manifolds. In our case, this description is given as

X± = (
T 2 × (

D2 − D2
1/3

)) ∪φ±
(
T 2 × D̊2

2/3

)
,

whereφ± : (1
3, 2

3) × T 2 × S1 → (1
3, 2

3) × T 2 × S1 is given byφ±(r, u, v, ξ) := (2
3 − r, ϕ±(u, v, ξ)).

Let us now fix some paths insideD2 × T 2, where the disc is thought of a subset ofC, centered at the origin. Fi
some base-point(u0, v0, ξ0) ∈ T 2 × D2, where|ξ0| = 1, so that the base point is in the ‘gluing area’. Let us de
2
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three pathsα±, β±, γ± by the formulaeα±(t) = (u0, v0 eit , ξ0), β±(t) = (u0 eit , v0, ξ0), andγ±(t) = (u0, v0, ξ0 eit ).
The pathγ± is then a meridian to the fibreT 2 × {0} overx±, that is its projection onto the fibre is trivial, where
α± andβ± induce a basis of the fundamental group of the fibre. Note that by the same formulae we can defi
(α′±, β ′±, γ ′±) inside the piecesT 2 × D2 to be glued in withϕ±. Then(α±, β±, γ±) induce a basis ofπ1(X − νF±)

and(α′±, β ′±, γ ′±) induce a basis ofπ1(∂(T 2 × D2)). The diffeomorphismsϕ± are then determined by their maps
fundamental groups

ϕ+∗ =
( ∗ ∗ a

∗ ∗ b

∗ ∗ p

)
, ϕ−∗ =

(∗ ∗ c

∗ ∗ d

∗ ∗ q

)
,

which are elements in Sl(3,Z). The entries marked as∗ will not be relevant to the fundamental group, as we shall
now. We call(a, b) ∈ Z

2 the direction of the logarithmic transformationϕ+, and|p| is its multiplicity.
In order to compute the fundamental group ofX′ we shall first compute the fundamental groups ofX± and then

glue them together viaζ . X+ is given as the union of two open sets, namely the setsX1 = T 2 × (D2 − D2
1/3) and

X2 = T 2 × D̊2
2/3, with intersectionX0 = T 2 × (D̊2

2/3 −D2
1/3). Only,X0 injects intoX1 via the natural inclusioni, but

into X2 via φ+. The fundamental group of each piece is

π1(X0) = 〈
α0, β0, γ0 | [ , ] = 1

〉
, π1(X1) = 〈

α,β, γ | [ , ] = 1
〉
, and π1(X2) = 〈

α′, β ′ | [ , ] = 1
〉
.

By [ , ] we simply mean that all commutator relations are satisfied. Now the Seifert–van Kampen theorem
thatπ1(X+) has as generators together the ones ofπ(X1) andπ(X2), all relations ofπ1(X1) and ofπ1(X2), and the
additional relations

i(α0) = φ(α0) ⇔ α′ = φ(α0), i(β0) = φ(β0) ⇔ β ′ = φ(β0), and i(γ0) = φ(γ0) ⇔ 1= φ(γ0).

The first two relations imply that we can just drop the generatorsα′ andβ ′ together with these two relations. Therefo
the fundamental group isπ1(X+) = 〈α+, β+, γ+ | [ , ] = 1, αa+βb+γ

p
+ = 1〉.

Correspondingly we getπ1(X−) = 〈α−, β−, γ− | [ , ] = 1, αc−βd−γ
q
− = 1〉. In order to compute the fundamen

group ofX′ = X+ ∪ζ X− we proceed in the same way.T 2 times a ‘middle annulus’ injects intoX− via the natura
inclusion, whereas it injects intoX+ via ζ . As we haveζ∗(α0) = α+, ζ∗(β0) = β+ andζ∗(γ0) = α+γ −1+ we get a final
formula:

π1(X
′) = 〈

α,β, γ | [ , ] = 1, αaβb
(
αγ −1)p = 1, αcβdγ q = 1

〉
.

By the classification of finitely generated Abelian groups we find that we have an isomorphismπ1(X
′) ∼= Z ⊕ Z/µZ,

whereµ is the highest common divisor of all the 2-minors of a presentation matrix for this group. It is easy to s
there are various choices possible for which this number equals 1, including cases where one of the multipli
both of them, may be zero.

Remark 1. If we perform the two logarithmic transformations such that they are trivial on theS1-factor, then the
construction isS1 times Dehn-surgery on the Hopf-link inS3. The resulting 4-manifold is thenS1 times a lens space
this can be seen using the surgery description of lens spaces [5].

3. Formulation in terms of gluing two copies ofT 2 × D2

We will denote byXϕ := (T 2 × D2) ∪ϕ (T 2 × D2) the 4-manifold obtained by gluingT 2 × D2 to T 2 × D2 via
the orientation-reversing diffeomorphismϕ between their boundaries. Let us denote byA2 an annulus. There ar
canonical identifications of the boundary-components ofT 2 × A2 with T 2 × S1, as before.

We will show here that all of the manifolds considered so far can be obtained by gluing just two copies ofT 2 ×D2

along their boundaries:

Lemma 3.1.We have the following diffeomorphism: Xψ◦ϕ ∼= (T 2 × D2) ∪ψ (T 2 × A2) ∪ϕ (T 2 × D2).

Proof. As any diffeomorphism of one boundary-component ofT 2 ×A2 extends over the whole ofT 2 ×A2 the result
follows easily. �
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Our next purpose is to calculate the fundamental group ofXϕ . Let us use the bases(α±, β±,±γ ±1± ) from above
(up to ‘orientation’) and suppose that the mapϕ∗, which is now given by an element of Sl(3,Z), looks as follows:

ϕ∗ =
(

a c g

b d h

e f k

)
. (2)

By the Theorem of Seifert–van Kampen a presentation of the fundamental group ofXϕ is given byπ1(Xϕ) = 〈α,β |
[α,β] = 1, (αg′

βh′
)(g,h) = 1〉. Here(g,h) denotes the greatest common divisor ofg andh, andg′, h′ are such tha

g = (g,h) g′, h = (g,h) h′. We set(0,0) := 0. The fundamental group is therefore isomorphic toπ1(Xϕ) = Z ⊕
Z/(g,h)Z. In particular,Xϕ is a homology Hopf surface if and only if(g,h) = 1, noting that anyXϕ has Euler-
characteristic zero.

If now we perform the logarithmic transformations associated withϕ± on the two fibersF± of the Hopf surface
then the resulting manifold will be given by the following gluing construction(

T 2 × D2) ∪
ϕ−1+

(
T 2 × A2) ∪ζ

(
T 2 × A2) ∪ϕ−

(
T 2 × D2)

which is diffeomorphic, by the above lemma, toX
ϕ−1+ ◦ζ◦ϕ− . Whether this manifold is a homology Hopf surface c

now be read off from the automorphism(ϕ−1+ ◦ ζ ◦ ϕ−)∗ of the fundamental group. However, calculating by t
matrix product the entity(g,h), which a posteriori depends on the numbersa, b, p andc, d, q only, is a rather hard
problem.

Theorem 3.2.Suppose the manifoldXϕ := (T 2 × D2) ∪ϕ (T 2 × D2), obtained from gluing with the orientation
reversing diffeomorphismϕ, is a homology Hopf surface. ThenXϕ is diffeomorphic to the Hopf surfaceS1 × S3.

Corollary 3.3. If logarithmic transformations on two fibers yield a homology Hopf surface then this4-manifold is
diffeomorphic to the standard Hopf surfaceS1 × S3.

Proof of the theorem. Observe first that the two manifoldsXϕ andX
ψ−1

t ◦ϕ◦ψb
are diffeomorphic as soon as t

diffeomorphismsψt andψb of T 2 × S1 extend overT 2 × D2 as diffeomorphisms. A diffeomorphismψ extends iff
the associated matrix has the form

ψ∗ =

 r t 0

s u 0
v w 1


 . (3)

This observation can be used to commit certain line operations onϕ∗ by left-multiplication with matrices induce
by extending diffeomorphisms, as well as to commit certain column operations by right-multiplication with
matrices, and this without changing the diffeomorphism type.

Suppose now thatXϕ is a homology Hopf surface with associated matrixϕ∗ as in (2) above. In particular, th
greatest common divisor ofg andh is one:(g,h) = 1. By left-multiplying with a matrixU ∈ Sl(2,Z) ⊆ Sl(3,Z),
where the inclusion is as the upper left part in the 3× 3 matrix, we may assume thatg = 1, h = 0 in (2). Such a matrix
U is of type (3). Now there is a matrixL of type (3) such that left-multiplication of the new matrixϕ∗ by L adds
−(k − 1) times the first line ofϕ∗ to its last line. Therefore we may suppose thatk = 1. Now there is a matrixR of
the type (3) such that right-multiplication of the newestϕ∗ by R will add appropriate multiples of the third column
ϕ∗ to its first and second, so that we may assumee = f = 0 becausek = 1. ϕ∗ in (2) may therefore be supposed
have the form

ϕ∗ =
(

a c 1
b d 0
0 0 1

)
. (4)

A corresponding diffeomorphism is given byϕ(u, v, z) = (uavcz,ubvd, z). Now we cannot simplify much furthe
in order to obtain the matrixζ∗, whereζ is inducing the standard Hopf surface as above. However, the atta
of T 2 × D2 to the upperT 2 × D2, which we shall denote byX+, may be done by attaching first a 2-handle, th
two 3-handles, and eventually a 4-handle. To be more precise, decompose the torusT 2 in the obvious way into a



42 R. Zentner / C. R. Acad. Sci. Paris, Ser. I 342 (2006) 37–42

dle
handle

The

orphism

here
e

d

ent
d the

topy. If
hisms of

s in

other,

d to my
nt to write

.

0-handleΣ0, two 1-handlesΣ11 andΣ12, and a 2-handleΣ2. Then the attaching, viaϕ, of Σ0 × D2 to X+ is done
alongΣ0 × ∂D2, so we attach a 2-handle and getX(2) := X+ ∪ (Σ0 × ∂D2). It is now easily checked thatΣ11 × D2

andΣ12 × D2 are attached toX(2) along a thickened 2-sphereS2 × D1, so their attaching corresponds to 3-han
attachment. FinallyΣ2 ×D2 is glued to the resulting manifold along a 3-sphere, so that this corresponds to a 4-
attachment. Now the union of the two 3- and the 4-handle is diffeomorphic to a boundary sumS1 × D3  S1 × D3,
which is the gluing of two pieces ofS1 × D3 via a diffeomorphism between two discs in their boundaries.
boundary of this manifold isS1 ×S2 # S1 ×S2. It is known [7] that any diffeomorphism ofS1 ×S2# S1 ×S2, extends
over the whole boundary sum. Therefore only the 2-handle-attachment is relevant for determining the diffeom
type of the closed 4-manifold.

On the other hand, the attaching ofΣ0 × ∂D is determined, up to isotopy, by the attaching of the attaching sp
{0}×S1 as well as the isomorphism of normal bundlesνΣ0×S1({0}×S1) → νT 3(ϕ({0}×S1)) induced by the derivativ
dϕ. We shall denote byLϕ this bundle isomorphism. After identification ofΣ0 with a ball centered in the origin inR2

we get a canonical isomorphismνΣ0×S1({0} × S1) ∼= S1 × R
2. By a framingf of ϕ({0} × S1) we understand a fixe

isomorphism of the normal bundleνΣ0×S1({0}× S1) with S1 × R2. We say that a framingf is isotopic to the framing
f ′ if they are homotopic through bundle isomorphisms. By replacingLϕ with f −1 we see that the 2-handle attachm
is determined by(ϕ({0} × S1), f ), the embedding of the attaching sphere and a framing for it. So framings an
isomorphismsLϕ are equivalent notions. Up to isotopy the attachment depends only on the framing up to iso
we fix one framing, we see that all possible isomorphisms of normal bundles are given by bundle automorp
S1 × R

2.
Now for the above choice ofϕ the attaching of the attaching sphere does not depend on the specific entrieϕ∗.

We identify the normal bundle ofϕ({0} × S1) with orthogonal complement to its tangent bundle withinT (T 3), and
get an identification withS1 × R

2 by specifying two constant orthonormal sections of that bundle,e1 = (1, 0, −1)

ande2 = (0, 1, 0). The isomorphismLϕ is then given by theconstantmatrix

Lϕ =
(

a c

b d

)
.

Because this matrix is in Sl(2,Z) we see that there is an isotopy of bundle automorphisms taking one into the
in other words the corresponding framings are isotopic.�
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