

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 342 (2006) 99-102

http://france.elsevier.com/direct/CRASS1/

Ordinary Differential Equations

Generalised power series solutions of sub-analytic differential equations

Mickaël Matusinski, Jean-Philippe Rolin

I.M.B., université de Bourgogne, 9, avenue Savary, B.P. 47870, 21078 Dijon cedex, France

Received 26 September 2005; accepted after revision 8 November 2005

Available online 6 December 2005

Presented by Étienne Ghys

Abstract

We show that if a solution y(x) of a sub-analytic differential equation admits an asymptotic expansion $\sum_{i=1}^{\infty} c_i x^{\mu_i}$, $\mu_i \in \mathbb{R}^+$, then the exponents μ_i belong to a finitely generated semi-group of \mathbb{R}^+ . We deduce a similar result for the components of non-oscillating trajectories of real analytic vector fields in dimension *n*. *To cite this article: M. Matusinski, J.-P. Rolin, C. R. Acad. Sci. Paris, Ser. I 342 (2006).*

© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Séries généralisées solutions d'équations différentielles sous-analytiques. Nous montrons que si une solution y(x) d'une équation différentielle sous-analytique admet un développement asymptotique de la forme $\sum_{i=1}^{\infty} c_i x^{\mu_i}$, $\mu_i \in \mathbb{R}^+$, alors les exposants μ_i appartiennent à un semi-groupe finiment engendré de \mathbb{R}^+ . Nous en déduisons un résultat analogue pour les composantes des trajectoires non oscillantes de champs de vecteurs analytiques réels en dimension *n*. *Pour citer cet article : M. Matusinski, J.-P. Rolin, C. R. Acad. Sci. Paris, Ser. I 342 (2006).*

© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let X be an analytic vector field on a real 3-dimensional manifold M. Consider an integral curve $\gamma : t \mapsto \gamma(t)$, $t \ge 0$, of X, supposed to be *sub-analytically non-oscillating and transcendental*. That is, any sub-analytic subset of positive codimension of M has a finite number of intersection points with the support $|\gamma|$ of γ . Thus γ has a unique ω -limit point p. The following desingularization theorem is proved in [1]:

Under the previous hypothesis, there exists a so-called γ -admissible transformation $\pi : (\tilde{M}, \tilde{\gamma}, \tilde{p}) \to (M, \gamma, p)$ such that the lifted curve is an integral curve of a vector field with non-nilpotent linear part (elementary singularity of vector field).

A γ -admissible transformation is a finite sequence of blowing-up transformations with non singular center, and ramified covers. Suppose given a local analytic coordinate system (x, y, z) of M with center p. The non-oscillating

E-mail addresses: mmatusin@u-bourgogne.fr (M. Matusinski), rolin@u-bourgogne.fr (J.-P. Rolin).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2005.11.005

assumption allows to suppose that the support $|\gamma|$ belongs to the positive quadrant and that γ is parametrized by *x*. A key step in the proof is the following result (Proposition 2 of [1]):

Suppose that the axis x = y = 0 is not invariant by the vector field X. Consider the projection (x, y(x)) and assume that y(x) has an asymptotic expansion $\sum_{i=0}^{\infty} c_i x^{\mu_i}$ $(\mu_i \in \mathbb{R}_+)$ with respect to x. Then the exponents μ_i belong to a finitely generated semi-group of \mathbb{R}_+ .

Note that if the exponents μ_i are rational numbers, the proposition gives a (possibly divergent) asymptotic *Puiseux* expansion of y(x). Consider for example an irrational number $\alpha > 0$ and a solution H(x) of the Euler equation $x^2y' = y - x$, defined for $x \ge 0$. Then $z(x) = xH(x^{\alpha})$ is the third component of a trajectory of the vector field defined by $\dot{x} = xy$, $\dot{y} = \alpha y^2$, $\dot{z} = \alpha z - \alpha xy + yz$. The asymptotic expansion of z(x) at the origin is a divergent power series whose exponents are irrational numbers belonging to the semi-group generated by 1 and α .

The main goal of the present Note is to prove a *n*-dimensional version of the previous result:

Theorem 1.1. Let X be a analytic vector field on a real analytic n-dimensional manifold M, and γ be sub-analytically non-oscillating and transcendental integral curve of X. Let p be the limit point of γ , and consider a local analytic coordinate system (x_1, \ldots, x_n) with center p, such that $|\gamma|$ is included in the positive octant and γ admits a parametrization $x_1 \mapsto (x_1, x_2(x_1), \ldots, x_n(x_1))$. If any component of γ admits an asymptotic expansion $\sum_{i=1}^{\infty} c_i x_1^{\mu_i}$, then the exponents μ_i belong to a finitely generated semi-group of \mathbb{R}_+ .

In [1], this result follows from a two steps elimination process. Assume, *w.l.o.*, $\mu_1 > 2$. The first step shows that the components of $\gamma(x) = (x, y(x), z(x))$ and their derivatives up to order 2 satisfy a system of two analytic equations. The second step uses the hypothesis on the axis x = y = 0, in conjunction with a property of analytic mappings (see [4]), to eliminate z(x) between the two equations. Therefore the component y(x) satisfies an analytic differential equation $R(x, y(x), xy'(x), x^2y''(x)) = 0$. It implies that the exponents μ_i belong to a finitely generated semi-group of \mathbb{R}_+ . Such a result, which generalizes both [2] and [3], is proved in [1].

Our approach is a generalization in any dimension of this process of an elimination followed by a resolution. The whole elimination step, which is performed in Section 2, does not lead anymore to an analytic differential equation, but to a *sub-analytic differential equation*. The properties of the exponents of a *generalized power series* which is the asymptotic expansion of a solution of a sub-analytic differential equation are investigated in Section 3.

2. From vector fields to sub-analytic differential equations

Proof of Theorem 1.1. The proof follows [1]. Up to a ramification $x \mapsto x^q$, for $q \in \mathbb{N}$ big enough (which would not affect the conclusion of the theorem), we may assume $\mu_1 > n - 1$. With the notation of the introduction, the vector field X is given, in the coordinate system (x_1, \ldots, x_n) , by *n* analytic differential equations, where \dot{x}_i means differentiation with respect to the time $t: \dot{x}_i = a_i(x_1, \ldots, x_n)$, $i = 1, \ldots, n$. These equations obviously imply that the components $x_2(x_1), \ldots, x_n(x_1)$ satisfy the equations $a_1(x_1, \ldots, x_n)x'_j = a_j(x_1, \ldots, x_n)$, $j = 2, \ldots, n$, where x'_j means the derivative with respect to x_1 . Let us perform (n-2) times the following operations: compute the derivative of the first equation, and eliminate $x'_3(x_1), \ldots, x'_n(x_1)$ in this equation with the help of remaining ones. We get a system of analytic differential equations $f_j(x_1, x_2(x_1), \ldots, x_2^{(n-1)}(x_1), x_3(x_1), \ldots, x_n(x_1)), j = 2, \ldots, n$.

system of analytic differential equations $f_j(x_1, x_2(x_1), \dots, x_2^{(n-1)}(x_1), x_3(x_1), \dots, x_n(x_1)), j = 2, \dots, n$. The projection of the analytic subset A of \mathbb{R}^{2n-1} defined in a neighborhood of the origin by the equations $f_2 = \dots = f_n = 0$ on the space $\mathbb{R}^{n+1} \times \{0\}^{n-2}$ is a sub-analytic set $\pi(A)$. Therefore there exists a sub-analytic function H such that the non-oscillating curve $x_1 \mapsto (x_1, x_2(x_1), \dots, x_2^{(n-1)}(x_1))$ satisfies the equation H = 0. It implies that the function $\varphi: x_1 \mapsto x_1^{-(n-1)}x_2(x_1)$, whose asymptotic expansion is $\sum c_i x_1^{\mu_i - (n-1)}$, is solution of a sub-analytic differential equation $f(x_1, \varphi(x_1), x \varphi'(x_1), \dots, x^{n-1} \varphi^{(n-1)}(x_1)) = 0$.

Theorem 1.1 is therefore a consequence of the result of the next section. \Box

3. Generalized power series solutions of sub-analytic differential equations

Theorem 3.1. Let f be a sub-analytic function defined in a neighborhood of the origin of \mathbb{R}^{n+2} . Consider an element φ of a Hardy field at the origin of \mathbb{R}_+ , solution of the equation $f(x, \varphi(x), x\varphi'(x), \dots, x^n\varphi^{(n)}(x)) = 0$. If φ admits an asymptotic expansion $\hat{\varphi}(x) = \sum_{i=1}^{\infty} c_i x^{\mu_i}$, $\mu_i \in \mathbb{R}^*_+$, $\lim_{i \to \infty} = +\infty$, then the exponents μ_i belong to a finitely generated additive semi-group of \mathbb{R}^*_+ .

Our approach is in some sense an extension of the classical Newton's polygon (more exactly Fine's polygon) method, used in [1-3]. Indeed, we show that the usual transformations of the formal power series, induced by the slopes of such a polygon, reduce the initial sub-analytic equation to an analytic differential equation. Let us recall what happens in the analytic case. For any convergent power series:

$$F(x, u_0, u_1, \dots, u_n) = \sum_{i, j_0, \dots, j_n} F_{i, j_0, \dots, j_n} x^{\alpha_i} u_0^{j_0} \cdots u_n^{j_n}$$

where the exponents α_i belong to a finitely generated semi-group of \mathbb{R}_+ , and the j_k are positive integers, the classical analysis of the *Newton–Fine's polygon* of *F* leads to the following conclusion:

- either $F(x, \varphi(x), \dots, x^n \varphi^{(n)}(x)) = 0$ and the exponents μ_k of its expansion $\hat{\varphi}$ belong to a finitely generated semi-group of \mathbb{R}_+ ;
- or else there exists an integer k_0 , a positive real number γ and an analytic unit U defined in a neighborhood of the origin such that, if we define φ_1 by $\varphi(x) = \sum_{i=1}^{k_0} c_i x^{\mu_i} + x^{\mu_k} \varphi_1(x)$, then $F(x, \varphi(x), \dots, x^n \varphi^{(n)}(x)) = x^{\gamma} U(x^{\beta_1}, \dots, x^{\beta_s}, \varphi_1(x), \dots, x^n \varphi_1^{(n)}(x))$, with $\gamma, \beta_1, \dots, \beta_s \in \mathbb{R}^*_+$. In that case, we say that the pair (F, φ) is *monomializable*.

Proof of Theorem 3.1. It relies on the previous Fine's polygon method and on a description of sub-analytic functions, which arises, for example, from [5] or [6]. Consider the sub-analytic function f of the statement of the theorem. It can be described as a finite composition of the three following types of applications:

- (i) an analytic function $F: V \to \mathbb{R}$, where V is a neighborhood of the origin of \mathbb{R}^p , $p \in \mathbb{N}$,
- (ii) a ramification $x \mapsto x^r$, for $x \in \mathbb{R}_+$ and $r \in \mathbb{Q}_+$,
- (iii) the division function D defined on \mathbb{R}^2 by $D(x, y) = \frac{x}{y}$ if $|y| \ge |x|$, and D(x, y) = 0 otherwise.

This allows to proceed by induction on the *complexity* of f, defining a sub-analytic function to be *simpler* than f if it is involved in the above description of f. We actually prove that the above dichotomy still holds for pairs (f, φ) , where f is a sub-analytic function, which obviously implies the theorem.

1. If f is an analytic function, we already recalled that the dichotomy holds.

Suppose now that f is a sub-analytic function, and that the result has been proved for sub-analytic functions simpler than f.

2. Suppose $f = f_1^r$, with $r \in \mathbb{Q}_+$, and f_1 simpler than f. If $f_1(x, \varphi(x), \dots, x^n \varphi^{(n)}(x)) = 0$, we conclude by the induction hypothesis. Otherwise, the pair (f_1, φ) is monomializable, as well as the pair (f, φ) .

3. Suppose that $f = F(f_1, ..., f_l)$, with *F* analytic and $f_1, ..., f_l$ are sub-analytic functions simpler than *f*. If φ is a solution of one of the differential equations $f_j(x, \varphi(x), ..., x^n \varphi^{(n)}(x)) = 0$, we conclude by the induction hypothesis. Otherwise, it is clear that the pairs $(f_1, \varphi), ..., (f_l, \varphi)$ are *simultaneously monomializable*. Therefore, φ_1 defined by $\varphi(x) = \sum_{i=1}^k c_i x^{\mu_i} + x^{\mu_k} \varphi_1(x)$ is a solution of:

$$F(x^{\gamma_1}U_1(x,...,x^n\varphi_1^{(n)}(x)),...,x^{\gamma_l}U_l(x,...,x^n\varphi_1^{(n)}(x))) = 0,$$

where U_1, \ldots, U_l are analytic and the γ_i 's belong to \mathbb{R}_+ . This equation can be written as:

$$F_1(x^{\beta_1}, \dots, x^{\beta_s}, \varphi_1(x), x\varphi_1'(x), \dots, x^n \varphi_1^{(n)}(x)) = 0.$$

where F_1 is analytic and the β_i 's belong to \mathbb{R}_+ .

4. Suppose finally that $f = D(f_1, f_2)$, where f_1, f_2 are simpler than f. Once again, if the pairs (f_1, φ) and (f_2, φ) are simultaneously monomializable, we get:

(---)

$$f(x,\varphi(x),...,x^{n}\varphi^{(n)}(x)) = \frac{x^{\gamma_{1}}U_{1}(x,\varphi_{1}(x),...,x^{n}\varphi_{1}^{(n)}(x))}{x^{\gamma_{2}}U_{2}(x,\varphi_{1}(x),...,x^{n}\varphi_{1}^{(n)}(x))}$$

with $\gamma_1 > \gamma_2$ and U_1 , U_2 analytic. This shows that the pair (f, φ) is also monomializable. \Box

References

- [1] F. Cano, R. Moussu, J.-P. Rolin, Non-oscillating integral curves and valuations, J. Reine Angew. Math. 582 (2005) 107–141.
- [2] J. Cano, On the series defined by differential equations, with an extension of the Puiseux polygon construction to these equations, Analysis 13 (1–2) (1993) 103–119.
- [3] D.Y. Grigoriev, M.F. Singer, Solving ordinary differential equations in terms of series with real exponents, Trans. Amer. Math. Soc. 327 (1) (1991) 329–351.
- [4] L. Kaup, B. Kaup, Holomorphic Functions of Several Variables, de Gruyter Stud. in Math., vol. 3, Walter de Gruyter & Co., Berlin, 1983. An introduction to the fundamental theory, With the assistance of Gottfried Barthel. Translated from the German by Michael Bridgland.
- [5] J.-M. Lion, J.-P. Rolin, Théorème de préparation pour les fonctions logarithmico-exponentielles, Ann. Inst. Fourier (Grenoble) 47 (3) (1997) 859–884.
- [6] L. van den Dries, A. Macintyre, D. Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. (2) 140 (1) (1994) 183–205.