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Abstract

We show that if a solutiony(x) of a sub-analytic differential equation admits an asymptotic expansion
∑∞

i=1 cix
µi , µi ∈ R+,

then the exponentsµi belong to a finitely generated semi-group ofR+. We deduce a similar result for the components of n
oscillating trajectories of real analytic vector fields in dimensionn. To cite this article: M. Matusinski, J.-P. Rolin, C. R. Acad.
Sci. Paris, Ser. I 342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Séries généralisées solutions d’équations différentielles sous-analytiques.Nous montrons que si une solutiony(x) d’une
équation différentielle sous-analytique admet un développement asymptotique de la forme

∑∞
i=1 cix

µi , µi ∈ R+, alors les expo-
santsµi appartiennent à un semi-groupe finiment engendré deR+. Nous en déduisons un résultat analogue pour les compos
des trajectoires non oscillantes de champs de vecteurs analytiques réels en dimensionn. Pour citer cet article : M. Matusinski,
J.-P. Rolin, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let X be an analytic vector field on a real 3-dimensional manifold M. Consider an integral curveγ : t �→ γ (t),
t � 0, of X, supposed to besub-analytically non-oscillating and transcendental. That is, any sub-analytic subset
positive codimension ofM has a finite number of intersection points with the support|γ | of γ . Thusγ has a unique
ω-limit point p. The following desingularization theorem is proved in [1]:

Under the previous hypothesis, there exists a so-calledγ -admissible transformationπ : (M̃, γ̃ , p̃) → (M,γ,p)

such that the lifted curve is an integral curve of a vector field with non-nilpotent linear part(elementary singularity
of vector field).

A γ -admissible transformationis a finite sequence of blowing-up transformations with non singular center
ramified covers. Suppose given a local analytic coordinate system(x, y, z) of M with centerp. The non-oscillating
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assumption allows to suppose that the support|γ | belongs to the positive quadrant and thatγ is parametrized byx.
A key step in the proof is the following result (Proposition 2 of [1]):

Suppose that the axisx = y = 0 is not invariant by the vector fieldX. Consider the projection(x, y(x)) and assume
that y(x) has an asymptotic expansion

∑∞
i=0 cix

µi (µi ∈ R+) with respect tox. Then the exponentsµi belong to a
finitely generated semi-group ofR+.

Note that if the exponentsµi are rational numbers, the proposition gives a (possibly divergent) asymptoticPuiseux
expansionof y(x). Consider for example an irrational numberα > 0 and a solutionH(x) of the Euler equation
x2y′ = y −x, defined forx � 0. Thenz(x) = xH(xα) is the third component of a trajectory of the vector field defi
by ẋ = xy, ẏ = αy2, ż = αz − αxy + yz. The asymptotic expansion ofz(x) at the origin is a divergent power seri
whose exponents are irrational numbers belonging to the semi-group generated by 1 andα.

The main goal of the present Note is to prove an-dimensional version of the previous result:

Theorem 1.1.LetX be a analytic vector field on a real analyticn-dimensional manifoldM , andγ be sub-analytically
non-oscillating and transcendental integral curve ofX. Let p be the limit point ofγ , and consider a local analyti
coordinate system(x1, . . . , xn) with centerp, such that|γ | is included in the positive octant andγ admits a parame
trization x1 �→ (x1, x2(x1), . . . , xn(x1)). If any component ofγ admits an asymptotic expansion

∑∞
i=1 cix

µi

1 , then the
exponentsµi belong to a finitely generated semi-group ofR+.

In [1], this result follows from a two steps elimination process. Assume,w.l.o., µ1 > 2. The first step shows that th
components ofγ (x) = (x, y(x), z(x)) and their derivatives up to order 2 satisfy a system of two analytic equa
The second step uses the hypothesis on the axisx = y = 0, in conjunction with a property of analytic mappin
(see [4]), to eliminatez(x) between the two equations. Therefore the componenty(x) satisfies an analytic differentia
equationR(x, y(x), xy′(x), x2y′′(x)) = 0. It implies that the exponentsµi belong to a finitely generated semi-gro
of R+. Such a result, which generalizes both [2] and [3], is proved in [1].

Our approach is a generalization in any dimension of this process of an elimination followed by a resoluti
whole elimination step, which is performed in Section 2, does not lead anymore to an analytic differential eq
but to asub-analytic differential equation.The properties of the exponents of ageneralized power serieswhich is the
asymptotic expansion of a solution of a sub-analytic differential equation are investigated in Section 3.

2. From vector fields to sub-analytic differential equations

Proof of Theorem 1.1. The proof follows [1]. Up to a ramificationx �→ xq , for q ∈ N big enough (which would
not affect the conclusion of the theorem), we may assumeµ1 > n − 1. With the notation of the introduction, th
vector fieldX is given, in the coordinate system(x1, . . . , xn), by n analytic differential equations, wherėxi means
differentiation with respect to the timet : ẋi = ai(x1, . . . , xn), i = 1, . . . , n. These equations obviously imply th
the componentsx2(x1), . . . , xn(x1) satisfy the equationsa1(x1, . . . , xn)x

′
j = aj (x1, . . . , xn), j = 2, . . . , n, wherex′

j

means the derivative with respect tox1. Let us perform(n− 2) times the following operations: compute the derivat
of the first equation, and eliminatex′

3(x1), . . . , x
′
n(x1) in this equation with the help of remaining ones. We ge

system of analytic differential equationsfj (x1, x2(x1), . . . , x
(n−1)
2 (x1), x3(x1), . . . , xn(x1)), j = 2, . . . , n.

The projection of the analytic subsetA of R2n−1 defined in a neighborhood of the origin by the equationsf2 =
· · · = fn = 0 on the spaceRn+1 × {0}n−2 is a sub-analytic setπ(A). Therefore there exists a sub-analytic funct
H such that the non-oscillating curvex1 �→ (x1, x2(x1), . . . , x

(n−1)
2 (x1)) satisfies the equationH = 0. It implies that

the functionϕ :x1 �→ x
−(n−1)
1 x2(x1), whose asymptotic expansion is

∑
cix

µi−(n−1)
1 , is solution of a sub-analyti

differential equationf (x1, ϕ(x1), xϕ′(x1), . . . , x
n−1ϕ(n−1)(x1)) = 0.

Theorem 1.1 is therefore a consequence of the result of the next section.�
3. Generalized power series solutions of sub-analytic differential equations

Theorem 3.1.Letf be a sub-analytic function defined in a neighborhood of the origin ofRn+2. Consider an elemen
ϕ of a Hardy field at the origin ofR+, solution of the equationf (x,ϕ(x), xϕ′(x), . . . , xnϕ(n)(x)) = 0. If ϕ admits
an asymptotic expansion̂ϕ(x) = ∑∞

i=1 cix
µi , µi ∈ R∗+, limi→∞ = +∞, then the exponentsµi belong to a finitely

generated additive semi-group ofR∗+.
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Our approach is in some sense an extension of the classical Newton’s polygon (more exactly Fine’s p
method, used in [1–3]. Indeed, we show that the usual transformations of the formal power series, induce
slopes of such a polygon, reduce the initial sub-analytic equation to an analytic differential equation. Let u
what happens in the analytic case. For any convergent power series:

F(x,u0, u1, . . . , un) =
∑

i,j0,...,jn

Fi,j0,...,jnx
αi u

j0
0 · · ·ujn

n ,

where the exponentsαi belong to a finitely generated semi-group ofR+, and thejk are positive integers, the classic
analysis of theNewton–Fine’s polygonof F leads to the following conclusion:

• either F(x,ϕ(x), . . . , xnϕ(n)(x)) = 0 and the exponentsµk of its expansionϕ̂ belong to a finitely generate
semi-group ofR+;

• or else there exists an integerk0, a positive real numberγ and an analytic unitU defined in a neighborhoo
of the origin such that, if we defineϕ1 by ϕ(x) = ∑k0

i=1 cix
µi + xµkϕ1(x), thenF(x,ϕ(x), . . . , xnϕ(n)(x)) =

xγ U(xβ1, . . . , xβs , ϕ1(x), . . . , xnϕ
(n)
1 (x)), with γ,β1, . . . , βs ∈ R∗+. In that case, we say that the pair(F,ϕ) is

monomializable.

Proof of Theorem 3.1. It relies on the previous Fine’s polygon method and on a description of sub-analytic func
which arises, for example, from [5] or [6]. Consider the sub-analytic functionf of the statement of the theorem.
can be described as a finite composition of the three following types of applications:

(i) an analytic functionF :V → R, whereV is a neighborhood of the origin ofRp, p ∈ N,
(ii) a ramificationx �→ xr , for x ∈ R+ andr ∈ Q+,

(iii) the division functionD defined onR2 by D(x,y) = x
y

if |y| � |x|, andD(x,y) = 0 otherwise.

This allows to proceed by induction on thecomplexityof f , defining a sub-analytic function to besimplerthanf if
it is involved in the above description off . We actually prove that the above dichotomy still holds for pairs(f,ϕ),
wheref is a sub-analytic function, which obviously implies the theorem.

1. If f is an analytic function, we already recalled that the dichotomy holds.
Suppose now thatf is a sub-analytic function, and that the result has been proved for sub-analytic functions s

thanf .
2. Supposef = f r

1 , with r ∈ Q+, andf1 simplerthanf . If f1(x,ϕ(x), . . . , xnϕ(n)(x)) = 0, we conclude by the
induction hypothesis. Otherwise, the pair(f1, ϕ) is monomializable, as well as the pair(f,ϕ).

3. Suppose thatf = F(f1, . . . , fl), with F analytic andf1, . . . , fl are sub-analytic functions simpler thanf . If
ϕ is a solution of one of the differential equationsfj (x,ϕ(x), . . . , xnϕ(n)(x)) = 0, we conclude by the inductio
hypothesis. Otherwise, it is clear that the pairs(f1, ϕ), . . . , (fl, ϕ) aresimultaneously monomializable. Therefore,ϕ1

defined byϕ(x) = ∑k
i=1 cix

µi + xµkϕ1(x) is a solution of:

F
(
xγ1U1

(
x, . . . , xnϕ

(n)
1 (x)

)
, . . . , xγlUl

(
x, . . . , xnϕ

(n)
1 (x)

)) = 0,

whereU1, . . . ,Ul are analytic and theγj
′s belong toR+. This equation can be written as:

F1
(
xβ1, . . . , xβs , ϕ1(x), xϕ′

1(x), . . . , xnϕ
(n)
1 (x)

) = 0,

whereF1 is analytic and theβj
′s belong toR+.

4. Suppose finally thatf = D(f1, f2), wheref1, f2 are simpler thanf . Once again, if the pairs(f1, ϕ) and(f2, ϕ)

are simultaneously monomializable, we get:

f
(
x,ϕ(x), . . . , xnϕ(n)(x)

) = xγ1U1(x,ϕ1(x), . . . , xnϕ
(n)
1 (x))

xγ2U2(x,ϕ1(x), . . . , xnϕ
(n)
1 (x))

with γ1 > γ2 andU1, U2 analytic. This shows that the pair(f,ϕ) is also monomializable. �
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