Generalised power series solutions of sub-analytic differential equations

Mickaël Matusinski, Jean-Philippe Rolin
I.M.B., université de Bourgogne, 9, avenue Savary, B.P. 47870, 21078 Dijon cedex, France

Received 26 September 2005; accepted after revision 8 November 2005
Available online 6 December 2005
Presented by Étienne Ghys

Abstract

We show that if a solution $y(x)$ of a sub-analytic differential equation admits an asymptotic expansion $\sum_{i=1}^{\infty} c_{i} x^{\mu_{i}}, \mu_{i} \in \mathbb{R}^{+}$, then the exponents μ_{i} belong to a finitely generated semi-group of \mathbb{R}^{+}. We deduce a similar result for the components of nonoscillating trajectories of real analytic vector fields in dimension n. To cite this article: M. Matusinski, J.-P. Rolin, C. R. Acad. Sci. Paris, Ser. I 342 (2006). © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Séries généralisées solutions d'équations différentielles sous-analytiques. Nous montrons que si une solution $y(x)$ d'une équation différentielle sous-analytique admet un développement asymptotique de la forme $\sum_{i=1}^{\infty} c_{i} x^{\mu_{i}}, \mu_{i} \in \mathbb{R}^{+}$, alors les exposants μ_{i} appartiennent à un semi-groupe finiment engendré de \mathbb{R}^{+}. Nous en déduisons un résultat analogue pour les composantes des trajectoires non oscillantes de champs de vecteurs analytiques réels en dimension n. Pour citer cet article:M. Matusinski, J.-P. Rolin, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let X be an analytic vector field on a real 3-dimensional manifold M. Consider an integral curve $\gamma: t \mapsto \gamma(t)$, $t \geqslant 0$, of X, supposed to be sub-analytically non-oscillating and transcendental. That is, any sub-analytic subset of positive codimension of M has a finite number of intersection points with the support $|\gamma|$ of γ. Thus γ has a unique ω-limit point p. The following desingularization theorem is proved in [1]:

Under the previous hypothesis, there exists a so-called γ-admissible transformation $\pi:(\tilde{M}, \tilde{\gamma}, \tilde{p}) \rightarrow(M, \gamma, p)$ such that the lifted curve is an integral curve of a vector field with non-nilpotent linear part (elementary singularity of vector field).

A γ-admissible transformation is a finite sequence of blowing-up transformations with non singular center, and ramified covers. Suppose given a local analytic coordinate system (x, y, z) of M with center p. The non-oscillating

[^0]assumption allows to suppose that the support $|\gamma|$ belongs to the positive quadrant and that γ is parametrized by x. A key step in the proof is the following result (Proposition 2 of [1]):

Suppose that the axis $x=y=0$ is not invariant by the vector field X. Consider the projection $(x, y(x))$ and assume that $y(x)$ has an asymptotic expansion $\sum_{i=0}^{\infty} c_{i} x^{\mu_{i}}\left(\mu_{i} \in \mathbb{R}_{+}\right)$with respect to x. Then the exponents μ_{i} belong to a finitely generated semi-group of \mathbb{R}_{+}.

Note that if the exponents μ_{i} are rational numbers, the proposition gives a (possibly divergent) asymptotic Puiseux expansion of $y(x)$. Consider for example an irrational number $\alpha>0$ and a solution $H(x)$ of the Euler equation $x^{2} y^{\prime}=y-x$, defined for $x \geqslant 0$. Then $z(x)=x H\left(x^{\alpha}\right)$ is the third component of a trajectory of the vector field defined by $\dot{x}=x y, \dot{y}=\alpha y^{2}, \dot{z}=\alpha z-\alpha x y+y z$. The asymptotic expansion of $z(x)$ at the origin is a divergent power series whose exponents are irrational numbers belonging to the semi-group generated by 1 and α.

The main goal of the present Note is to prove a n-dimensional version of the previous result:
Theorem 1.1. Let X be a analytic vector field on a real analytic n-dimensional manifold M, and γ be sub-analytically non-oscillating and transcendental integral curve of X. Let p be the limit point of γ, and consider a local analytic coordinate system $\left(x_{1}, \ldots, x_{n}\right)$ with center p, such that $|\gamma|$ is included in the positive octant and γ admits a parametrization $x_{1} \mapsto\left(x_{1}, x_{2}\left(x_{1}\right), \ldots, x_{n}\left(x_{1}\right)\right)$. If any component of γ admits an asymptotic expansion $\sum_{i=1}^{\infty} c_{i} x_{1}^{\mu_{i}}$, then the exponents μ_{i} belong to a finitely generated semi-group of \mathbb{R}_{+}.

In [1], this result follows from a two steps elimination process. Assume, w.l.o., $\mu_{1}>2$. The first step shows that the components of $\gamma(x)=(x, y(x), z(x))$ and their derivatives up to order 2 satisfy a system of two analytic equations. The second step uses the hypothesis on the axis $x=y=0$, in conjunction with a property of analytic mappings (see [4]), to eliminate $z(x)$ between the two equations. Therefore the component $y(x)$ satisfies an analytic differential equation $R\left(x, y(x), x y^{\prime}(x), x^{2} y^{\prime \prime}(x)\right)=0$. It implies that the exponents μ_{i} belong to a finitely generated semi-group of \mathbb{R}_{+}. Such a result, which generalizes both [2] and [3], is proved in [1].

Our approach is a generalization in any dimension of this process of an elimination followed by a resolution. The whole elimination step, which is performed in Section 2, does not lead anymore to an analytic differential equation, but to a sub-analytic differential equation. The properties of the exponents of a generalized power series which is the asymptotic expansion of a solution of a sub-analytic differential equation are investigated in Section 3.

2. From vector fields to sub-analytic differential equations

Proof of Theorem 1.1. The proof follows [1]. Up to a ramification $x \mapsto x^{q}$, for $q \in \mathbb{N}$ big enough (which would not affect the conclusion of the theorem), we may assume $\mu_{1}>n-1$. With the notation of the introduction, the vector field X is given, in the coordinate system $\left(x_{1}, \ldots, x_{n}\right)$, by n analytic differential equations, where \dot{x}_{i} means differentiation with respect to the time $t: \dot{x}_{i}=a_{i}\left(x_{1}, \ldots, x_{n}\right), i=1, \ldots, n$. These equations obviously imply that the components $x_{2}\left(x_{1}\right), \ldots, x_{n}\left(x_{1}\right)$ satisfy the equations $a_{1}\left(x_{1}, \ldots, x_{n}\right) x_{j}^{\prime}=a_{j}\left(x_{1}, \ldots, x_{n}\right), j=2, \ldots, n$, where x_{j}^{\prime} means the derivative with respect to x_{1}. Let us perform $(n-2)$ times the following operations: compute the derivative of the first equation, and eliminate $x_{3}^{\prime}\left(x_{1}\right), \ldots, x_{n}^{\prime}\left(x_{1}\right)$ in this equation with the help of remaining ones. We get a system of analytic differential equations $f_{j}\left(x_{1}, x_{2}\left(x_{1}\right), \ldots, x_{2}^{(n-1)}\left(x_{1}\right), x_{3}\left(x_{1}\right), \ldots, x_{n}\left(x_{1}\right)\right), j=2, \ldots, n$.

The projection of the analytic subset A of $\mathbb{R}^{2 n-1}$ defined in a neighborhood of the origin by the equations $f_{2}=$ $\cdots=f_{n}=0$ on the space $\mathbb{R}^{n+1} \times\{0\}^{n-2}$ is a sub-analytic set $\pi(A)$. Therefore there exists a sub-analytic function H such that the non-oscillating curve $x_{1} \mapsto\left(x_{1}, x_{2}\left(x_{1}\right), \ldots, x_{2}^{(n-1)}\left(x_{1}\right)\right)$ satisfies the equation $H=0$. It implies that the function $\varphi: x_{1} \mapsto x_{1}^{-(n-1)} x_{2}\left(x_{1}\right)$, whose asymptotic expansion is $\sum c_{i} x_{1}^{\mu_{i}-(n-1)}$, is solution of a sub-analytic differential equation $f\left(x_{1}, \varphi\left(x_{1}\right), x \varphi^{\prime}\left(x_{1}\right), \ldots, x^{n-1} \varphi^{(n-1)}\left(x_{1}\right)\right)=0$.

Theorem 1.1 is therefore a consequence of the result of the next section.

3. Generalized power series solutions of sub-analytic differential equations

Theorem 3.1. Let f be a sub-analytic function defined in a neighborhood of the origin of \mathbb{R}^{n+2}. Consider an element φ of a Hardy field at the origin of \mathbb{R}_{+}, solution of the equation $f\left(x, \varphi(x), x \varphi^{\prime}(x), \ldots, x^{n} \varphi^{(n)}(x)\right)=0$. If φ admits an asymptotic expansion $\hat{\varphi}(x)=\sum_{i=1}^{\infty} c_{i} x^{\mu_{i}}, \mu_{i} \in \mathbb{R}_{+}^{*}, \lim _{i \rightarrow \infty}=+\infty$, then the exponents μ_{i} belong to a finitely generated additive semi-group of \mathbb{R}_{+}^{*}.

Our approach is in some sense an extension of the classical Newton's polygon (more exactly Fine's polygon) method, used in [1-3]. Indeed, we show that the usual transformations of the formal power series, induced by the slopes of such a polygon, reduce the initial sub-analytic equation to an analytic differential equation. Let us recall what happens in the analytic case. For any convergent power series:

$$
F\left(x, u_{0}, u_{1}, \ldots, u_{n}\right)=\sum_{i, j_{0}, \ldots, j_{n}} F_{i, j_{0}, \ldots, j_{n}} x^{\alpha_{i}} u_{0}^{j_{0}} \cdots u_{n}^{j_{n}}
$$

where the exponents α_{i} belong to a finitely generated semi-group of \mathbb{R}_{+}, and the j_{k} are positive integers, the classical analysis of the Newton-Fine's polygon of F leads to the following conclusion:

- either $F\left(x, \varphi(x), \ldots, x^{n} \varphi^{(n)}(x)\right)=0$ and the exponents μ_{k} of its expansion $\hat{\varphi}$ belong to a finitely generated semi-group of \mathbb{R}_{+};
- or else there exists an integer k_{0}, a positive real number γ and an analytic unit U defined in a neighborhood of the origin such that, if we define φ_{1} by $\varphi(x)=\sum_{i=1}^{k_{0}} c_{i} x^{\mu_{i}}+x^{\mu_{k}} \varphi_{1}(x)$, then $F\left(x, \varphi(x), \ldots, x^{n} \varphi^{(n)}(x)\right)=$ $x^{\gamma} U\left(x^{\beta_{1}}, \ldots, x^{\beta_{s}}, \varphi_{1}(x), \ldots, x^{n} \varphi_{1}^{(n)}(x)\right)$, with $\gamma, \beta_{1}, \ldots, \beta_{s} \in \mathbb{R}_{+}^{*}$. In that case, we say that the pair (F, φ) is monomializable.

Proof of Theorem 3.1. It relies on the previous Fine's polygon method and on a description of sub-analytic functions, which arises, for example, from [5] or [6]. Consider the sub-analytic function f of the statement of the theorem. It can be described as a finite composition of the three following types of applications:
(i) an analytic function $F: V \rightarrow \mathbb{R}$, where V is a neighborhood of the origin of $\mathbb{R}^{p}, p \in \mathbb{N}$,
(ii) a ramification $x \mapsto x^{r}$, for $x \in \mathbb{R}_{+}$and $r \in \mathbb{Q}_{+}$,
(iii) the division function D defined on \mathbb{R}^{2} by $D(x, y)=\frac{x}{y}$ if $|y| \geqslant|x|$, and $D(x, y)=0$ otherwise.

This allows to proceed by induction on the complexity of f, defining a sub-analytic function to be simpler than f if it is involved in the above description of f. We actually prove that the above dichotomy still holds for pairs (f, φ), where f is a sub-analytic function, which obviously implies the theorem.

1. If f is an analytic function, we already recalled that the dichotomy holds.

Suppose now that f is a sub-analytic function, and that the result has been proved for sub-analytic functions simpler than f.
2. Suppose $f=f_{1}^{r}$, with $r \in \mathbb{Q}_{+}$, and f_{1} simpler than f. If $f_{1}\left(x, \varphi(x), \ldots, x^{n} \varphi^{(n)}(x)\right)=0$, we conclude by the induction hypothesis. Otherwise, the pair $\left(f_{1}, \varphi\right)$ is monomializable, as well as the pair (f, φ).
3. Suppose that $f=F\left(f_{1}, \ldots, f_{l}\right)$, with F analytic and f_{1}, \ldots, f_{l} are sub-analytic functions simpler than f. If φ is a solution of one of the differential equations $f_{j}\left(x, \varphi(x), \ldots, x^{n} \varphi^{(n)}(x)\right)=0$, we conclude by the induction hypothesis. Otherwise, it is clear that the pairs $\left(f_{1}, \varphi\right), \ldots,\left(f_{l}, \varphi\right)$ are simultaneously monomializable. Therefore, φ_{1} defined by $\varphi(x)=\sum_{i=1}^{k} c_{i} x^{\mu_{i}}+x^{\mu_{k}} \varphi_{1}(x)$ is a solution of:

$$
F\left(x^{\gamma_{1}} U_{1}\left(x, \ldots, x^{n} \varphi_{1}^{(n)}(x)\right), \ldots, x^{\gamma_{l}} U_{l}\left(x, \ldots, x^{n} \varphi_{1}^{(n)}(x)\right)\right)=0
$$

where U_{1}, \ldots, U_{l} are analytic and the $\gamma_{j}{ }^{\prime} s$ belong to \mathbb{R}_{+}. This equation can be written as:

$$
F_{1}\left(x^{\beta_{1}}, \ldots, x^{\beta_{s}}, \varphi_{1}(x), x \varphi_{1}^{\prime}(x), \ldots, x^{n} \varphi_{1}^{(n)}(x)\right)=0
$$

where F_{1} is analytic and the $\beta_{j}^{\prime} s$ belong to \mathbb{R}_{+}.
4. Suppose finally that $f=D\left(f_{1}, f_{2}\right)$, where f_{1}, f_{2} are simpler than f. Once again, if the pairs $\left(f_{1}, \varphi\right)$ and $\left(f_{2}, \varphi\right)$ are simultaneously monomializable, we get:

$$
f\left(x, \varphi(x), \ldots, x^{n} \varphi^{(n)}(x)\right)=\frac{x^{\gamma_{1}} U_{1}\left(x, \varphi_{1}(x), \ldots, x^{n} \varphi_{1}^{(n)}(x)\right)}{x^{\gamma_{2}} U_{2}\left(x, \varphi_{1}(x), \ldots, x^{n} \varphi_{1}^{(n)}(x)\right)}
$$

with $\gamma_{1}>\gamma_{2}$ and U_{1}, U_{2} analytic. This shows that the pair (f, φ) is also monomializable.

References

[1] F. Cano, R. Moussu, J.-P. Rolin, Non-oscillating integral curves and valuations, J. Reine Angew. Math. 582 (2005) 107-141.
[2] J. Cano, On the series defined by differential equations, with an extension of the Puiseux polygon construction to these equations, Analysis 13 (1-2) (1993) 103-119.
[3] D.Y. Grigoriev, M.F. Singer, Solving ordinary differential equations in terms of series with real exponents, Trans. Amer. Math. Soc. 327 (1) (1991) 329-351.
[4] L. Kaup, B. Kaup, Holomorphic Functions of Several Variables, de Gruyter Stud. in Math., vol. 3, Walter de Gruyter \& Co., Berlin, 1983. An introduction to the fundamental theory, With the assistance of Gottfried Barthel. Translated from the German by Michael Bridgland.
[5] J.-M. Lion, J.-P. Rolin, Théorème de préparation pour les fonctions logarithmico-exponentielles, Ann. Inst. Fourier (Grenoble) 47 (3) (1997) 859-884.
[6] L. van den Dries, A. Macintyre, D. Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. (2) 140 (1) (1994) 183-205.

[^0]: E-mail addresses: mmatusin@u-bourgogne.fr (M. Matusinski), rolin@u-bourgogne.fr (J.-P. Rolin).
 1631-073X/\$ - see front matter © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
 doi:10.1016/j.crma.2005.11.005

