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Abstract

We establish sharp concentration of mass for isotropic convex bodies: there exists an absolute constantc > 0 such that ifK is an
isotropic convex body inRn, then

Prob
({

x ∈ K: ‖x‖2 � c
√

nLKt
})

� exp
(−√

n t
)

for everyt � 1, whereLK denotes the isotropic constant.To cite this article: G. Paouris, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Concentration de masse pour les corps convexes isotropes.Nous démontrons qu’il existe une constante absoluec > 0, telle
que, siK est un corps convexe isotrope, alors

Prob
({

x ∈ K: ‖x‖2 � c
√

nLKt
})

� exp
(−√

n t
)

pour toutt � 1, où LK désigne la constante d’isotropie.Pour citer cet article : G. Paouris, C. R. Acad. Sci. Paris, Ser. I 342
(2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

A convex bodyK in R
n, with volume equal to 1 and center of mass at the origin, is called isotropic if its in

matrix is a multiple of the identity. Equivalently, if there exists a positive constantLK such that
∫
K

〈x, θ〉2 dx = L2
K

for everyθ ∈ Sn−1. The starting point of this paper is the following concentration estimate of Alesker [1]: ifK is an
isotropic convex body inRn then, for everyt � 1 we have

Prob
({

x ∈ K: ‖x‖2 � c
√

nLKt
})

� 2 exp
(−t2).

Throughout this note, we writeBn
2 for the Euclidean unit ball and‖ · ‖2 for the Euclidean norm;c, c1, c2 etc. will

denote absolute positive constants.
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Bobkov and Nazarov (see [2,3]) have obtained a striking strengthening of Alesker’s estimate for the
1-unconditional isotropic convex bodies: in this case,

Prob
({

x ∈ K: ‖x‖2 � c
√

nLKt
})

� exp
(−√

nt
)

for everyt � 1. Strong dimension dependent volume concentration was recently confirmed in [5] for the unit b
the Schatten trace classes as well.

The purpose of this Note is to establish the fact that the ‘Bobkov–Nazarov estimate’ holds true in full gene

Theorem 1.1.If K is an isotropic convex body inRn then, for everyt � 1 we have that

Prob
({

x ∈ K: ‖x‖2 � c
√

nLKt
})

� exp
(−√

n t
)
.

2. Sketch of the proof

Let K be an isotropic convex body inRn. For anyq � 1, we defineIq(K) := (
∫
K

‖x‖q

2 dx)1/q . As observed in [11]
in order to prove Theorem 1.1 it is enough to show that

Ic1
√

n(K) � c2I2(K). (1)

For everyq � 1 we define theLq -centroid bodyZq(K) of K by its support functionhZq(K)(y) := (
∫
K

|〈x, y〉|q dx)1/q .

Under a different normalization these bodies were introduced in [8]. The family{Zq(K): q � 1} increases to the bod
Z∞(K) = conv{K,−K}. SinceK is isotropic, we haveZ2(K) = LKBn

2 . We will use the following facts:
(i) Let C be a symmetric convex body inRn and letwq(C) := (

∫
Sn−1 h

q
C(φ)dσ(φ))1/q be theq-th mean width

of C. It is easily checked that

wq

(
Zq(K)

) �
√

q

q + n
Iq(K). (2)

(ii) In [6] it is proved that ifk∗(C) is the largest positive integer for whichµn,k{F ∈ Gn,k: 1
2w1(C)‖x‖2 � hC(x) �

2w1(C)‖x‖2 for all x ∈ F } � 1− k
n+k

, then

w1(C) � wq(C) (3)

for everyq � k∗(C). HereGn,k is the Grassmann manifold ofk-dimensional subspaces ofR
n equipped with the Haa

probability measureµn,k . Recall that the critical dimensionk∗ is completely determined by the mean widthw1(C)

and the circumradiusR(C) of C; in [10] it is shown thatk∗(C) � n
w1(C)2

R(C)2 .
(iii) Definition. Let K be a convex body of volume 1 inRn. We define

q∗ := q∗(K) := max
{
q ∈ N: k∗

(
Z◦

q(K)
)
� q

}
,

whereZ◦
q(K) is the polar body ofZq(K). A related parameter was introduced in [12], where the following lo

bound forq∗(K) was also proved.

Proposition 2.1.If K is an isotropic convex body inRn then

q∗(K) � c
√

n. (4)

From the above discussion it becomes clear that (1), and hence Theorem 1.1, will follow if we show that

wq∗
(
Zq∗(K)

)
� c

√
q∗ LK or, equivalently, w1

(
Zq∗(K)

)
� c

√
q∗ LK. (5)

By the definition ofq∗(K) there existsF ∈ Gn,q∗ such that12w1(Zq∗(K)) � hZq∗ (K)(θ) � 2w1(Zq∗(K)) for all θ ∈
SF := Sn−1 ∩ F . The following proposition completes the proof:

Proposition 2.2.Let K be an isotropic convex body inRn. For every integerq � 1 and everyF ∈ Gn,q there exists
θ ∈ SF such that

hZq(K)(θ) � c
√

q LK. (6)
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Sketch of the proof. Fix F ∈ Gn,q and writeE for the orthogonal subspace ofF andPF for the orthogonal projectio
ontoF . For everyφ ∈ SF we defineE+(φ) = {x ∈ span{E,φ}: 〈x,φ〉 � 0}.

Let q � 0 and writeBq(K,F ) for the convex body inF defined by the gauge function

φ �→ ‖φ‖1+q/(q+1)

2

( ∫
K∩E+(φ)

∣∣〈x,φ〉∣∣q dx

)−1/(q+1)

(see [9] for details and references). Integration in polar and cylindrical coordinates shows that

PF

(
Zq(K)

) = (2q)1/q
∣∣B2q−1(K,F )

∣∣2/q
Zq

(B2q−1(K,F )
)
, (7)

whereĀ denotes the homothetA/|A|1/n of volume 1 of a convex bodyA. Using well known Khintchine type in
equalities for log-concave functions (see [9] for details and references) we get

∣∣B2q−1(K,F )
∣∣2/q � cLK. (8)

Therefore,

PF

(
Zq(K)

) ⊆ c1LKZq

(B2q−1(K,F )
) ⊆ c2LKZ∞

(B2q−1(K,F )
)
. (9)

Taking volumes in (9) and estimating the volume ofZ∞(B2q−1(K,F )) by a standard use of the Rogers–Sheph
inequality, we complete the proof.�

It is interesting to note that the estimate of Theorem 1.1 is sharp in bothn and t ; the �n
1-ball Bn

1 is the extrema
isotropic convex body in the following sense: For every isotropic convex bodyK in R

n and for every 2� q � ∞,

Iq(K)

I2(K)
� c

Iq( Bn
1 )

I2( Bn
1 )

.

3. Further results

3.1. ReverseLq -affine isoperimetric inequality

Lutwak, Yang and Zhang proved in [7] that ifK is a convex body of volume 1 inRn, then
∣∣Zq(K)

∣∣1/n �
∣∣Zq

( Bn
2

)∣∣1/n � c
√

q/n

for every 1� q � n, wherec > 0 is an absolute constant. Our analysis of theLq -centroid bodies leads to the followin
reverse inequality.

Theorem 3.1.LetK be a convex body inRn, with volume1 and center of mass at the origin. For every1� q � n we
have that∣∣Zq(K)

∣∣1/n � c
√

q/nLK,

wherec > 0 is a universal constant.

3.2. Random points in isotropic convex bodies

Let ε ∈ (0,1) and considerN independent random pointsx1, . . . , xN uniformly distributed in an isotropic conve
bodyK in R

n. A question of Kannan, Lovász and Simonovits is to findN0, as small as possible, for which the follow
ing holds true: ifN � N0 then with probability greater than 1− ε one has‖Id − 1

NL2
K

∑N
i=1 xi ⊗ xi‖ � ε. Bourgain

in [4] proved that one can chooseN0 � c(ε)n(logn)3; this was improved toN0 � c(ε)n(logn)2 by Rudelson [13].
Theorem 1.1 allows us to remove one more logarithmic term.
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Theorem 3.2.Let ε ∈ (0,1) and letK be an isotropic convex body inRn. If N � c(ε)n logn, and if x1, . . . , xN are
independent random points uniformly distributed inK , then with probability greater than1− ε we have

(1− ε)L2
K � 1

N

N∑
i=1

〈xi, θ〉2 � (1+ ε)L2
K

for everyθ ∈ Sn−1.

3.3. Concluding remark

All the results of this note remain valid if we replace Lebesgue measure on an isotropic convex body by an
isotropic log-concave measure. Detailed references, proofs and various extensions of the results of this note w
elsewhere.
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