C. R. Acad. Sci. Paris, Ser. I 342 (2006) 179-182

Functional Analysis

Concentration of mass on isotropic convex bodies

Grigoris Paouris ${ }^{1}$
Department of Mathematics, University of Athens, Panepistimiopolis 157 84, Athens, Greece
Received 9 November 2005; accepted 16 November 2005
Available online 20 December 2005
Presented by Gilles Pisier

Abstract

We establish sharp concentration of mass for isotropic convex bodies: there exists an absolute constant $c>0$ such that if K is an isotropic convex body in \mathbb{R}^{n}, then $$
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geqslant c \sqrt{n} L_{K} t\right\}\right) \leqslant \exp (-\sqrt{n} t)
$$ for every $t \geqslant 1$, where L_{K} denotes the isotropic constant. To cite this article: G. Paouris, C. R. Acad. Sci. Paris, Ser. I 342 (2006). © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Concentration de masse pour les corps convexes isotropes. Nous démontrons qu'il existe une constante absolue $c>0$, telle que, si K est un corps convexe isotrope, alors

$$
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geqslant c \sqrt{n} L_{K} t\right\}\right) \leqslant \exp (-\sqrt{n} t)
$$

pour tout $t \geqslant 1$, où L_{K} désigne la constante d'isotropie. Pour citer cet article: G. Paouris, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

A convex body K in \mathbb{R}^{n}, with volume equal to 1 and center of mass at the origin, is called isotropic if its inertia matrix is a multiple of the identity. Equivalently, if there exists a positive constant L_{K} such that $\int_{K}\langle x, \theta\rangle^{2} \mathrm{~d} x=L_{K}^{2}$ for every $\theta \in S^{n-1}$. The starting point of this paper is the following concentration estimate of Alesker [1]: if K is an isotropic convex body in \mathbb{R}^{n} then, for every $t \geqslant 1$ we have

$$
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geqslant c \sqrt{n} L_{K} t\right\}\right) \leqslant 2 \exp \left(-t^{2}\right)
$$

Throughout this note, we write B_{2}^{n} for the Euclidean unit ball and $\|\cdot\|_{2}$ for the Euclidean norm; c, c_{1}, c_{2} etc. will denote absolute positive constants.

[^0]Bobkov and Nazarov (see [2,3]) have obtained a striking strengthening of Alesker's estimate for the class of 1 -unconditional isotropic convex bodies: in this case,

$$
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geqslant c \sqrt{n} L_{K} t\right\}\right) \leqslant \exp (-\sqrt{n} t)
$$

for every $t \geqslant 1$. Strong dimension dependent volume concentration was recently confirmed in [5] for the unit balls of the Schatten trace classes as well.

The purpose of this Note is to establish the fact that the 'Bobkov-Nazarov estimate' holds true in full generality.
Theorem 1.1. If K is an isotropic convex body in \mathbb{R}^{n} then, for every $t \geqslant 1$ we have that

$$
\operatorname{Prob}\left(\left\{x \in K:\|x\|_{2} \geqslant c \sqrt{n} L_{K} t\right\}\right) \leqslant \exp (-\sqrt{n} t)
$$

2. Sketch of the proof

Let K be an isotropic convex body in \mathbb{R}^{n}. For any $q \geqslant 1$, we define $I_{q}(K):=\left(\int_{K}\|x\|_{2}^{q} \mathrm{~d} x\right)^{1 / q}$. As observed in [11], in order to prove Theorem 1.1 it is enough to show that

$$
\begin{equation*}
I_{c_{1} \sqrt{n}}(K) \leqslant c_{2} I_{2}(K) \tag{1}
\end{equation*}
$$

For every $q \geqslant 1$ we define the L_{q}-centroid body $Z_{q}(K)$ of K by its support function $h_{Z_{q}(K)}(y):=\left(\int_{K}|\langle x, y\rangle|^{q} \mathrm{~d} x\right)^{1 / q}$. Under a different normalization these bodies were introduced in [8]. The family $\left\{Z_{q}(K): q \geqslant 1\right\}$ increases to the body $Z_{\infty}(K)=\operatorname{conv}\{K,-K\}$. Since K is isotropic, we have $Z_{2}(K)=L_{K} B_{2}^{n}$. We will use the following facts:
(i) Let C be a symmetric convex body in \mathbb{R}^{n} and let $w_{q}(C):=\left(\int_{S^{n-1}} h_{C}^{q}(\phi) \mathrm{d} \sigma(\phi)\right)^{1 / q}$ be the q-th mean width of C. It is easily checked that

$$
\begin{equation*}
w_{q}\left(Z_{q}(K)\right) \simeq \sqrt{\frac{q}{q+n}} I_{q}(K) . \tag{2}
\end{equation*}
$$

(ii) In [6] it is proved that if $k_{*}(C)$ is the largest positive integer for which $\mu_{n, k}\left\{F \in G_{n, k}: \frac{1}{2} w_{1}(C)\|x\|_{2} \leqslant h_{C}(x) \leqslant\right.$ $2 w_{1}(C)\|x\|_{2}$ for all $\left.x \in F\right\} \geqslant 1-\frac{k}{n+k}$, then

$$
\begin{equation*}
w_{1}(C) \simeq w_{q}(C) \tag{3}
\end{equation*}
$$

for every $q \leqslant k_{*}(C)$. Here $G_{n, k}$ is the Grassmann manifold of k-dimensional subspaces of \mathbb{R}^{n} equipped with the Haar probability measure $\mu_{n, k}$. Recall that the critical dimension k_{*} is completely determined by the mean width $w_{1}(C)$ and the circumradius $R(C)$ of C; in [10] it is shown that $k_{*}(C) \simeq n \frac{w_{1}(C)^{2}}{R(C)^{2}}$.
(iii) Definition. Let K be a convex body of volume 1 in \mathbb{R}^{n}. We define

$$
q_{*}:=q_{*}(K):=\max \left\{q \in \mathbb{N}: k_{*}\left(Z_{q}^{\circ}(K)\right) \geqslant q\right\},
$$

where $Z_{q}^{\circ}(K)$ is the polar body of $Z_{q}(K)$. A related parameter was introduced in [12], where the following lower bound for $q_{*}(K)$ was also proved.

Proposition 2.1. If K is an isotropic convex body in \mathbb{R}^{n} then

$$
\begin{equation*}
q_{*}(K) \geqslant c \sqrt{n} . \tag{4}
\end{equation*}
$$

From the above discussion it becomes clear that (1), and hence Theorem 1.1, will follow if we show that

$$
\begin{equation*}
w_{q_{*}}\left(Z_{q_{*}}(K)\right) \leqslant c \sqrt{q_{*}} L_{K} \quad \text { or, equivalently, } \quad w_{1}\left(Z_{q_{*}}(K)\right) \leqslant c \sqrt{q_{*}} L_{K} . \tag{5}
\end{equation*}
$$

By the definition of $q_{*}(K)$ there exists $F \in G_{n, q_{*}}$ such that $\frac{1}{2} w_{1}\left(Z_{q_{*}}(K)\right) \leqslant h_{Z_{q_{*}}(K)}(\theta) \leqslant 2 w_{1}\left(Z_{q_{*}}(K)\right)$ for all $\theta \in$ $S_{F}:=S^{n-1} \cap F$. The following proposition completes the proof:

Proposition 2.2. Let K be an isotropic convex body in \mathbb{R}^{n}. For every integer $q \geqslant 1$ and every $F \in G_{n, q}$ there exists $\theta \in S_{F}$ such that

$$
\begin{equation*}
h_{Z_{q}(K)}(\theta) \leqslant c \sqrt{q} L_{K} . \tag{6}
\end{equation*}
$$

Sketch of the proof. Fix $F \in G_{n, q}$ and write E for the orthogonal subspace of F and P_{F} for the orthogonal projection onto F. For every $\phi \in S_{F}$ we define $E^{+}(\phi)=\{x \in \operatorname{span}\{E, \phi\}:\langle x, \phi\rangle \geqslant 0\}$.

Let $q \geqslant 0$ and write $B_{q}(K, F)$ for the convex body in F defined by the gauge function

$$
\phi \mapsto\|\phi\|_{2}^{1+q /(q+1)}\left(\int_{K \cap E^{+}(\phi)}|\langle x, \phi\rangle|^{q} \mathrm{~d} x\right)^{-1 /(q+1)}
$$

(see [9] for details and references). Integration in polar and cylindrical coordinates shows that

$$
\begin{equation*}
P_{F}\left(Z_{q}(K)\right)=(2 q)^{1 / q}\left|B_{2 q-1}(K, F)\right|^{2 / q} Z_{q}\left(\bar{B}_{2 q-1}(K, F)\right) \tag{7}
\end{equation*}
$$

where \bar{A} denotes the homothet $A /|A|^{1 / n}$ of volume 1 of a convex body A. Using well known Khintchine type inequalities for log-concave functions (see [9] for details and references) we get

$$
\begin{equation*}
\left|B_{2 q-1}(K, F)\right|^{2 / q} \leqslant c L_{K} . \tag{8}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
P_{F}\left(Z_{q}(K)\right) \subseteq c_{1} L_{K} Z_{q}\left(\bar{B}_{2 q-1}(K, F)\right) \subseteq c_{2} L_{K} Z_{\infty}\left(\bar{B}_{2 q-1}(K, F)\right) . \tag{9}
\end{equation*}
$$

Taking volumes in (9) and estimating the volume of $Z_{\infty}\left(\bar{B}_{2 q-1}(K, F)\right)$ by a standard use of the Rogers-Shephard inequality, we complete the proof.

It is interesting to note that the estimate of Theorem 1.1 is sharp in both n and t; the ℓ_{1}^{n}-ball B_{1}^{n} is the extremal isotropic convex body in the following sense: For every isotropic convex body K in \mathbb{R}^{n} and for every $2 \leqslant q \leqslant \infty$,

$$
\frac{I_{q}(K)}{I_{2}(K)} \leqslant c \frac{I_{q}\left(\overline{B_{1}^{n}}\right)}{I_{2}\left(\overline{B_{1}^{n}}\right)} .
$$

3. Further results

3.1. Reverse L_{q}-affine isoperimetric inequality

Lutwak, Yang and Zhang proved in [7] that if K is a convex body of volume 1 in \mathbb{R}^{n}, then

$$
\left|Z_{q}(K)\right|^{1 / n} \geqslant\left|Z_{q}\left(\overline{B_{2}^{n}}\right)\right|^{1 / n} \geqslant c \sqrt{q / n}
$$

for every $1 \leqslant q \leqslant n$, where $c>0$ is an absolute constant. Our analysis of the L_{q}-centroid bodies leads to the following reverse inequality.

Theorem 3.1. Let K be a convex body in \mathbb{R}^{n}, with volume 1 and center of mass at the origin. For every $1 \leqslant q \leqslant n$ we have that

$$
\left|Z_{q}(K)\right|^{1 / n} \leqslant c \sqrt{q / n} L_{K},
$$

where $c>0$ is a universal constant.

3.2. Random points in isotropic convex bodies

Let $\varepsilon \in(0,1)$ and consider N independent random points x_{1}, \ldots, x_{N} uniformly distributed in an isotropic convex body K in \mathbb{R}^{n}. A question of Kannan, Lovász and Simonovits is to find N_{0}, as small as possible, for which the following holds true: if $N \geqslant N_{0}$ then with probability greater than $1-\varepsilon$ one has $\left\|\mathrm{Id}-\frac{1}{N L_{K}^{2}} \sum_{i=1}^{N} x_{i} \otimes x_{i}\right\| \leqslant \varepsilon$. Bourgain in [4] proved that one can choose $N_{0} \simeq c(\varepsilon) n(\log n)^{3}$; this was improved to $N_{0} \simeq c(\varepsilon) n(\log n)^{2}$ by Rudelson [13]. Theorem 1.1 allows us to remove one more logarithmic term.

Theorem 3.2. Let $\varepsilon \in(0,1)$ and let K be an isotropic convex body in \mathbb{R}^{n}. If $N \geqslant c(\varepsilon) n \log n$, and if x_{1}, \ldots, x_{N} are independent random points uniformly distributed in K, then with probability greater than $1-\varepsilon$ we have

$$
(1-\varepsilon) L_{K}^{2} \leqslant \frac{1}{N} \sum_{i=1}^{N}\left\langle x_{i}, \theta\right\rangle^{2} \leqslant(1+\varepsilon) L_{K}^{2}
$$

for every $\theta \in S^{n-1}$.

3.3. Concluding remark

All the results of this note remain valid if we replace Lebesgue measure on an isotropic convex body by an arbitrary isotropic log-concave measure. Detailed references, proofs and various extensions of the results of this note will appear elsewhere.

Acknowledgements

I thank M. Fradelizi, A. Giannopoulos, O. Guédon and A. Pajor for helpful discussions.

References

[1] S. Alesker, ψ_{2}-estimate for the Euclidean norm on a convex body in isotropic position, in: X. Lindenstrauss, V.D. Milman (Eds.), Geom. Aspects of Funct. Analysis, in: Oper. Theory Adv. Appl., vol. 77, Birkhäuser, Basel, 1995, pp. 1-4.
[2] S.G. Bobkov, F.L. Nazarov, On convex bodies and log-concave probability measures with unconditional basis, in: V.D. Milman, G. Schechtman (Eds.), Geom. Aspects of Funct. Analysis, in: Lecture Notes in Math., vol. 1807, Springer, 2003, pp. 53-69.
[3] S.G. Bobkov, F.L. Nazarov, Large deviations of typical linear functionals on a convex body with unconditional basis, in: Stochastic Inequalities and Applications, in: Progr. Probab., vol. 56, Birkhäuser, Basel, 2003, pp. 3-13.
[4] J. Bourgain, Random points in isotropic convex bodies, in: Convex Geometric Analysis, Berkeley, CA, 1996, in: Math. Sci. Res. Inst. Publ., vol. 34, Cambridge Univ. Press, Cambridge, 1999, pp. 53-58.
[5] O. Guédon and G. Paouris, Concentration of mass on the Schatten classes, Preprint.
[6] A. Litvak, V.D. Milman, G. Schechtman, Averages of norms and quasi-norms, Math. Ann. 312 (1998) 95-124.
[7] E. Lutwak, D. Yang, G. Zhang, L^{p} affine isoperimetric inequalities, J. Differential Geom. 56 (2000) 111-132.
[8] E. Lutwak, G. Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997) 1-16.
[9] V.D. Milman, A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, in: X. Lindenstrauss, V.D. Milman (Eds.), Geom. Aspects of Funct. Analysis, in: Lecture Notes in Math., vol. 1376, Springer, 1989, pp. 64-104.
[10] V.D. Milman, G. Schechtman, Global versus local asymptotic theories of finite-dimensional normed spaces, Duke Math. J. 90 (1997) 73-93.
[11] G. Paouris, Concentration of mass and central limit properties of isotropic convex bodies, Proc. Amer. Math. Soc. 133 (2) (2005) 565-575.
[12] G. Paouris, On the Ψ_{2}-behavior of linear functionals on isotropic convex bodies, Studia Math. 168 (3) (2005) 285-299.
[13] M. Rudelson, Random vectors in the isotropic position, J. Funct. Anal. 164 (1999) 60-72.

[^0]: E-mail address: grigoris_paouris@yahoo.co.uk (G. Paouris).
 1 Research supported in part by the European Network PHD, FP6 Marie Curie Actions, RTN, Contract MCRN-511953 and by the EPEAEK program "Pythagoras II".

 1631-073X/\$ - see front matter © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
 doi:10.1016/j.crma.2005.11.018

