Triangular hyperbolic buildings

Riikka Kangaslampi ${ }^{\text {a }}$, Alina Vdovina ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Mathematics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 TKK, Finland
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, University of Newcastle upon Tyne, Newcastle NE1 7RU, UK

Received 5 October 2005; accepted after revision 24 November 2005

Presented by Mikhaël Gromov

Abstract

We construct triangular hyperbolic polyhedra whose links are generalized 4-gons. The universal cover of such a polyhedron is a hyperbolic building, whose apartments are hyperbolic planes tessellated by regular triangles with angles $\pi / 4$. The fundamental groups of the polyhedra are hyperbolic, torsion free, with property (T). To cite this article: R. Kangaslampi, A. Vdovina, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Immeubles hyperboliques triangulaires. On construit des polyèdres hyperboliques dont les links en chaque sommet sont des 4-gones généralizées. Leurs revêtements universels sont des immeubles dont les appartements sont des plans hyperboliques pavés par des triangles réguliers d'angles $\pi / 4$. Les groupes fondamentaux de nos polyédres sont hyperboliques, sans torsion et ont la propriété (T). Pour citer cet article : R. Kangaslampi, A. Vdovina, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Hyperbolic torsion free groups with property (T) have uncountably many nonisomorphic quotient groups $\left(\Gamma_{\alpha}\right)_{\alpha \in I}$ which are simple and with infinitely many conjugacy classes (see [8,10,11]). Such groups exist: the random group of Gromov [9], cocompact lattices of $\operatorname{Sp}(1, n)$ etc.

We give new examples of groups of this kind which are explicitly presented by generators and relations.
A polyhedron is a two-dimensional complex which is obtained from several oriented p-gons by identification of corresponding sides. Let us take a sphere of a small radius at a point of the polyhedron. The intersection of the sphere with the polyhedron is a graph, which is called the link at this point.

In this Note we construct polyhedra whose links at vertices are generalized 4 -gons and whose faces are regular hyperbolic triangles with angles $\pi / 4$. The universal covering of such a polyhedron is a hyperbolic building, see [6]. Moreover, with the metric introduced in [1, p. 165] it is a complete metric space of non-positive curvature in the sense of Alexandrov and Busemann [7]. It follows from [2] that the fundamental groups of our polyhedra satisfy the property

[^0](T) of Kazhdan. (Another relevant reference is [15].) So, our groups, which are explicitly presented by generators and relations, are hyperbolic, torsion free and they have property (T).

Definition 1.1. Let $\mathcal{P}(p, m)$ be a tessellation of the hyperbolic plane by regular polygons with p sides, with angles π / m at each vertex where m is an integer. A hyperbolic building is a polygonal complex X, which can be expressed as the union of subcomplexes called apartments such that:

1. Every apartment is isomorphic to $\mathcal{P}(p, m)$.
2. For any two polygons of X, there is an apartment containing both of them.
3. For any two apartments $A_{1}, A_{2} \in X$ containing the same polygon, there exists an isomorphism $A_{1} \rightarrow A_{2}$ fixing $A_{1} \cap A_{2}$.

Our construction gives new examples of hyperbolic triangular buildings with regular triangles as chambers. Examples of hyperbolic buildings with right-angled triangles were constructed by Bourdon in [3]. His construction has been generalized by Świątkowski in [12].

2. Polygonal presentation and construction of polyhedra

Recall that a generalized m-gon is a connected, bipartite graph of diameter m and girth $2 m$, in which each vertex lies on at least two edges. A graph is bipartite if its set of vertices can be partitioned into two disjoint subsets such that no two vertices in the same subset lie on a common edge. The vertices of one subset we will call black vertices, denoted by x_{i}, and the vertices of the other subset the white ones, denoted by $y_{i}, i \in \mathbb{Z}_{+}$. The diameter is the maximum distance between two vertices and the girth is the length of a shortest circuit.

We recall also the definition of a polygonal presentation introduced in [14]:
Definition 2.1. Suppose we have n disjoint connected bipartite graphs $G_{1}, G_{2}, \ldots, G_{n}$. Let P_{i} and Q_{i} be the sets of black and white vertices respectively in $G_{i}, i=1, \ldots, n$; let $P=\bigcup P_{i}, Q=\bigcup Q_{i}, P_{i} \cap P_{j}=\emptyset, Q_{i} \cap Q_{j}=\emptyset$ for $i \neq j$ and let λ be a bijection $\lambda: P \rightarrow Q$.

A set \mathcal{K} of k-tuples ($x_{1}, x_{2}, \ldots, x_{k}$), $x_{i} \in P$, will be called a polygonal presentation over P compatible with λ if
(1) $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right) \in \mathcal{K}$ implies that $\left(x_{2}, x_{3}, \ldots, x_{k}, x_{1}\right) \in \mathcal{K}$;
(2) given $x_{1}, x_{2} \in P$, then $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right) \in \mathcal{K}$ for some x_{3}, \ldots, x_{k} if and only if x_{2} and $\lambda\left(x_{1}\right)$ are incident in some G_{i};
(3) given $x_{1}, x_{2} \in P$, then $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right) \in \mathcal{K}$ for at most one $x_{3} \in P$.

If there exists such \mathcal{K}, we will call λ a basic bijection.
The polygonal presentations with $k=3, n=1$, and G_{1} a generalized 3-gon have been listed in [4,5].
We can associate a polyhedron K on n vertices with each polygonal presentation \mathcal{K} as follows: for every cyclic k-tuple ($x_{1}, x_{2}, x_{3}, \ldots, x_{k}$) we take an oriented k-gon on the boundary of which the word $x_{1} x_{2} x_{3} \cdots x_{k}$ is written. To obtain the polyhedron we identify the corresponding sides of our polygons, respecting orientation.

Lemma 2.2 [14]. A polyhedron K which corresponds to a polygonal presentation \mathcal{K} has graphs $G_{1}, G_{2}, \ldots, G_{n}$ as vertex-links.

Now we construct two polygonal presentations with $k=3$ and $n=1$, but for which the graph G_{1} is a generalized 4 -gon. We denote the elements of P by x_{i} and the elements of Q by $y_{i}, i=1,2, \ldots, 15$. Let T_{1} and T_{2} be the two following sets of triples, and in both cases define the basic bijection $\lambda: P \rightarrow Q$ by $\lambda\left(x_{i}\right)=y_{i}$ for all $i=1,2, \ldots, 15$.

$$
\begin{aligned}
T_{1}:\{ & \left(x_{1}, x_{2}, x_{7}\right),\left(x_{1}, x_{8}, x_{11}\right),\left(x_{1}, x_{14}, x_{5}\right),\left(x_{2}, x_{4}, x_{13}\right),\left(x_{12}, x_{4}, x_{2}\right), \\
& \left(x_{4}, x_{9}, x_{3}\right),\left(x_{6}, x_{8}, x_{3}\right),\left(x_{14}, x_{6}, x_{3}\right),\left(x_{12}, x_{10}, x_{5}\right),\left(x_{13}, x_{15}, x_{5}\right), \\
& \left.\left(x_{12}, x_{9}, x_{6}\right),\left(x_{11}, x_{10}, x_{7}\right),\left(x_{14}, x_{13}, x_{7}\right),\left(x_{9}, x_{15}, x_{8}\right),\left(x_{11}, x_{15}, x_{10}\right)\right\},
\end{aligned}
$$

Fig. 1. Graph G_{1} for T_{1} with basic projection $\lambda\left(x_{i}\right)=y_{i}$.

$$
\begin{aligned}
T_{2}:\{ & \left(x_{1}, x_{10}, x_{1}\right),\left(x_{1}, x_{15}, x_{2}\right),\left(x_{2}, x_{11}, x_{9}\right),\left(x_{2}, x_{14}, x_{3}\right),\left(x_{3}, x_{7}, x_{4}\right) \\
& \left(x_{3}, x_{15}, x_{13}\right),\left(x_{4}, x_{8}, x_{6}\right),\left(x_{4}, x_{12}, x_{11}\right),\left(x_{5}, x_{8}, x_{5}\right),\left(x_{5}, x_{10}, x_{12}\right) \\
& \left.\left(x_{6}, x_{14}, x_{6}\right),\left(x_{7}, x_{12}, x_{7}\right),\left(x_{8}, x_{13}, x_{9}\right),\left(x_{9}, x_{14}, x_{15}\right),\left(x_{10}, x_{13}, x_{11}\right)\right\}
\end{aligned}
$$

We can draw the bipartite graph G_{1} for T_{1} (Fig. 1). For every triple (x_{i}, x_{j}, x_{k}) in T_{1} the points y_{i} and x_{j} as well as y_{j} and x_{k} and also y_{k} and x_{i} have to be incident in the graph. For T_{2} we obtain a similar graph, only with a different labeling of the points.

Let us check that these sets are desired polygonal presentations. Remark, that the smallest thick generalized 4-gon can be presented in the following way: its 'points' are pairs (i, j), where $i, j=1, \ldots, 6, i \neq j$ and 'lines' are triples $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right),\left(i_{3}, j_{3}\right)$ of those pairs, where $i_{1}, i_{2}, i_{3}, j_{1}, j_{2}$ and j_{3} are all different. We mark pairs (i, j), where $i, j=1, \ldots, 6, i \neq j$ by x_{1} to x_{15}. Now one can check by direct examination, that the graph G_{1} is really the smallest thick generalized 4 -gon. (See [13] for classification of generalized quadrangles.)

Definition 2.3. Let \mathcal{K}_{1} and \mathcal{K}_{2} be two polygonal presentations with $k=3, n=1$, and for which the graph G_{1} is a generalized 4 -gon. Then \mathcal{K}_{1} and \mathcal{K}_{2} are equivalent, if there exists an automorphism of the generalized 4 -gon which transforms the 4 -gon of \mathcal{K}_{1} to the 4 -gon of \mathcal{K}_{2}.

In our case there is no such automorphism transforming T_{1} to T_{2}, since in T_{1} no element appears twice in one triple, but in T_{2} there are triples of the form $\left(x_{i}, x_{j}, x_{i}\right)$. Thus the polygonal presentations T_{1} and T_{2} are not equivalent.

For polygonal presentation $T_{i}, i=1,2$, take 15 oriented regular hyperbolic triangles with angles $\pi / 4$, write words from the presentation on their boundaries and glue together sides with the same letters, respecting orientation. The result is a hyperbolic polyhedron with one vertex and 15 faces and its universal covering is a triangular hyperbolic building. The fundamental group $\Gamma_{i}, i=1,2$, of the polyhedron acts simply transitively on vertices of the building. The group $\Gamma_{i}, i=1,2$, has 15 generators and 15 relations, which come naturally from the polygonal presentation T_{i}, $i=1$, 2 .

For the first homology groups we get $H_{1}\left(\Gamma_{1}\right)=\mathbb{Z} / 162 \mathbb{Z}$ and $H_{1}\left(\Gamma_{2}\right)=\mathbb{Z} / 9 \mathbb{Z}$.

References

[1] W. Ballmann, M. Brin, Polygonal complexes and combinatorial group theory, Geom. Dedicata 50 (1994) 165-191.
[2] W. Ballmann, J. Światkowski, On L^{2}-cohomology and property (T) for automorphism groups of polyhedral cell complexes, Geom. Funct. Anal. 7 (4) (1997) 615-645.
[3] M. Bourdon, Sur les immeubles fuchsiens et leur type de quasi-isometrie, Ergodic Theory Dynam. Systems 20 (2) (2000) 343-364.
[4] D. Cartwright, A. Mantero, T. Steger, A. Zappa, Groups acting simply transitively on vertices of a building of type \tilde{A}_{2}, Geom. Dedicata 47 (1993) 143-166.
[5] M. Edjvet, J. Howie, Star graphs, projective planes and free subgroups in small cancellation groups, Proc. London Math. Soc. (3) 57 (2) (1988) 301-328.
[6] D. Gaboriau, F. Paulin, Sur les immeubles hyperboliques, Geom. Dedicata 88 (1-3) (2001) 153-197.
[7] E. Ghys, P. de la Harpe (Eds.), Sur les groupes Hyperboliques d'après Mikhael Gromov, Birhäuser, Boston, Basel, Berlin, 1990.
[8] M. Gromov, Hyperbolic groups, in: M. Gersten (Ed.), Essays in Group Theory, in: MSRI Publ., vol. 8, Springer, 1987, pp. 75-263.
[9] M. Gromov, Random walk in random groups, Geom. Funct. Anal. 13 (1) (2003) 73-146.
[10] A.Yu. Olshanskii, On residualing homomorphisms and G-subgroups of hyperbolic groups, Int. J. Algebra Comput. 3 (4) (1993) 365-409.
[11] N. Ozawa, There is no separable universal II_{1}-factor, Proc. Amer. Math. Soc. 132 (2) (2004) 487-490 (electronic).
[12] J. Świątkowski, Some infinite groups generated by involutions have Kazhdan's property (T), Forum Math. 13 (6) (2001) 741-755.
[13] J. Tits, R.M. Weiss, Moufang Polygons, Springer Monogr. Math., Springer-Verlag, Berlin, 2002.
[14] A. Vdovina, Combinatorial structure of some hyperbolic buildings, Math. Z. 241 (3) (2002) 471-478.
[15] A. Zuk, La propriété de Kazhdan pour les groupes agissant sur les polyèdres, C. R. Acad. Sci. Paris, Sér. I Math. 323 (5) (1996) 453-458.

[^0]: E-mail addresses: riikka.kangaslampi@tkk.fi (R. Kangaslampi), alina.vdovina@newcastle.ac.uk (A. Vdovina).
 1631-073X/\$ - see front matter © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
 doi:10.1016/j.crma.2005.11.020

