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Abstract

In this Note we deal with the finite element approximation of a transmission problem across a prefractal curve approximating
the von Koch fractal curve. We construct a mesh adapted to the geometric shape of the interface and we refine it consistently witt
some estimates in suitable weighted Sobolev spaces. In these spaces we also obtain an approximation errdroesitierthts.
article: P. Bagnerini et al., C. R. Acad. Sci. Paris, Ser. | 342 (2006).
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Résumé

Eléments finis pour un probléme de transmission préfractaleCette Note concerne I'approximation éléments finis d'un
probléme de transmission a travers la courbe préfractale approchant la courbe fractale de von Koch. On construit un maillage adap
a la géométrie de l'interface et on génére un processus de raffinement de maillage en utilisant des estimations dans des espaces
Sobolev a poids, choisis convenablement. On obtient aussi dans ces espaces une estimation de I'erreur d’appfoumeitesn.
cet article: P. Bagnerini et al., C. R. Acad. Sci. Paris, Ser. | 342 (2006).
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1. Introduction

Several phenomena encountered in nature or in technical processes can be modelled by transmission problems wi
irregular interfaces. Fractal and prefractal geometries can be adopted as mathematical models for irregularity (see
e.g., [4]). We deal with a transmission problem in a polygonal domain, where the interface is a polygonal prefractal
curve approximating the von Koch curve. This type of problem is firstly studied, from an analytical point of view,
in [5] and in [6]. In this work, we formulate a Galerkin method on adapted meshes and we obtain an approximation
error estimate in suitable weighted Sobolev spaces, depending on the regularity of the solution. The mesh refinemer
strategy and the error estimate are obtained in the spirit of [1]. We generate a sequence of ‘nested meshes’, one for ea
prefractal problem approximating the limit fractal problem, and we construct a mesh refinement algorithm, consistent
with some estimates in weighted Sobolev spaces.
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2. Position of the problem

We consider a bounded convex polygonal dom&irin R2: for example the open parallelogram with vertices
P1=(0,0), P, =(1,0), P3=(1/2,+/3/2), P4 = (1/2, —+/3/2) as in Fig. 1. For every in N, let K,, be then-th
prefractal curve approximating the von Koch curve and having as endpBingd P,. We briefly describe the
procedure to construct the von Koch curve, which is an example of self-similar fractatolle¢ a line segment of
unit length having as endpoint¥ and P,. Let K1 be obtained by dividingKg in three equal parts, removing the
central segment and replacing it by the other two sides of the equilateral triangle based on the removed segmel
Iterating this procedure to each of the segment& gfwe construct a sequence of prefractal polygonal cukigs
which tends in a suitable sense to a limit cuirecalled the von Koch curve, astends to infinity. As in Fig. 1, the
interfacek, dividess2 in two subsets?,} and$22, the part ofs2 which lies respectively over and undg,.

n?

We consider the-th transmission problem

—Aup,=f inQii=1,2,
ouy
—Un Aty = [ on ] onk,, (1)
u, =0 onos2,
[un]=0 onk,

where f is a given function inL2(£2); u, is a scaling factor which is only important for the asymptotic analysis of
the problems and so we choose it equal to one, since we workaiited; A, denotes the Laplace—Beltrami operator
onkK,; [u,] and[%] denote the jump af,, and of its normal derivative acrog§, respectively. LetD be a bounded
polygon and{vs, ..., v,} be the vertices of its reentrant corners. We denote;by) — R the distance function

from the vertexv; in D, by Z;(¢) := {x € D: r;(x) < ¢}, and byr: D — R a smooth weighing function such that

r(x) =ri(x), x € Zi(e) andr(x) = 1,x € D\ U, Z:(2¢), for a fixed, possibly smalk > 0. We denote byi2>%(D),

0 < a < 1, the weighted Sobolev space equipped with the n|prmf12.a(D) =] IIiD + szz |lr*DF . ||S,D. In [6],

the variational formulation of (1) is provided together with existence, uniqueness and regularity results. We summariz
all these results in the following proposition, where we denotepthe restriction ofz, to £2/ for i = 1, 2 and byV;,

the tangential gradient alorj, .

Proposition 2.1.For every f € L2(£2), the problen(1) is equivalent to the following well-posed variational equation
findu, € V(2, K,) = {v € H}(£2): vk, € H}(K,)} such that

Py /Vun-Vvdxdy—i—/vtun~Vlvds=/fvdxdy, Yve V($2,K,), (2)
2 K 2

which has one and only one solutiop. Moreoveru,, satisfies the following inequality

lunllve.k.) < cll fllL2e), 3)
for a constant independent from and we also have that

1

—ul e H>(2]),i=12,01> &, a2 > 1,

— uplk, € H?(Ky).

We recall that, for alls > 1, H*(K,) = {u € HX(K,,): u|y € H*(M), M = segment ofK,,} (for definitions and
details see [2] and also [6]). We observe that the solution exhibits a singular behavior near to the reentrant corners
the curvek,, and so we construct an appropriate mesh refinement algorithm.

3. The mesh construction
The aim of this work is to formulate a Galerkin approximation of the problem (2). The first step of the finite element

method is the construction of an appropriate mesh of the domain, adapted to the physical properties of the probler
The use of optimal meshes, in terms of the local mesh size, node positions and quality of the elements, leads to tl
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Fig. 1. Left: the mesh adapted to the geometric shape of the domain. Middle: the first (local) refinement. Right: the second (global) refinement.

computation of more accurate discrete solutions. In view of further researches on the asymptotic behavior of discrete
solutions (i.e, whem — c0), we construct a sequence of ‘nested meshés'; },.en, one for each approximated
problem(P,), with the following features:

— the vertices of the prefractal curves are nodes of the triangulations;
— the meshes are conformal and they form a regular and non quasi-uniform family.

With the same features mentioned above and for any fixiedN, we generate a local and a global refinement mesh
algorithm by a suitable splitting of the elements according to the intersection between an dleaneirthe prefractal

curve K, is composed either of one edge or two, or of one vertex or two, or it is empty. We provide examples of
meshes generated with our set of rules in Fig. 1. Iterating this partitioning of the elements, we generate a sequenc
of nested meshe{ST,,,hj}jeN, which satisfy the set of assumptions of the following theorem/[fet .Q,’l anda = «;,

i=1,2.

Theorem 3.1.Let D be a non-convex polygonal domain, afif} };,~o a regular family of meshes ob. Lets and
hr be the global and local mesh sizes, respectively, @nél,~o be locally refined towards reentrant corners in the
following senskefor a fixeda < 1, there exists a > 0 such that

(@) hr < ohY 1= for everyT e 7;, such that a vertex df is a reentrant corner oD;
(b) hy < ohinfpr® for everyT € 7, in a neighborhood of a reentrant corner 6.

Then, the spac¥, c C°(D) of piecewise affine polynomials & verifies

inf |u—uvilop <Ch Y 1r*DPulop Yue H**(D). (4)
v eV Bl=2

This theorem is due to BabuSka et al. (see [1, Theorem 5.1]).
4. Galerkin approximation of the problem
We approximate the probleii,) by a conforming Galerkin method (see [3] for the theory of finite elements).

From now on we supposefixed inN. Let {T,,,hj }jen be a regular family of triangulations of the domahwhich
is constructed as in Section 3 and kgt:= maxdiam(T'), T € 7, x,;} be the size of thg-th triangulation. For all
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j in N, we define the finite dimensional spaxé’hj ={veC°() stv|r ePy, VT € Tn.ns}s whereP; denotes
the polynomials of degree 1. By settiﬂdhj (£2):= X,},hj N H($2), we getan)hj (£2) C V(£2, K,,). The Galerkin
approximation for(P,) reads: Findu, »; € an,h,- (£2) such that

(Pa.j) /wn,h/. -thjdxder/v,un,hj - Vivp, ds:/fvhjdxdy, Vup; € Vip, (2) (5)
2 K, 2

for all j in N. Finally, we formulate our main theorem:

Theorem 4.1.Letu, and Un,h; be the solutions ofP,) and (P, ;), respectively. The following error estimate holds

1/2
B2
lun —un,n;llvie k) < Chj{ Z Z | Dﬂuﬁ1|o,95 + Iunlg,K,,} ) (6)
i=1,2|p|=2

whereC is a constant independent frolm andr, for all j € N.
Proof. Itis a consequence of Theorem 3.1 and Cea’s Lemna.
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