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Abstract

We answer positively Zariski’s multiplicity question for special classes of nonisolated singul@dtige thisarticle: C. Eyral,
C. R. Acad. Sci. Paris, Ser. | 342 (2006).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé
Question de Zariski sur lamultiplicité et singularités alignées. Nous répondons par I'affirmative a la question de Zariski sur
la multiplicité pour des classes particulieres de singularités non is@éesciter cet article: C. Eyral, C. R. Acad. Sci. Paris,

Ser. | 342 (2006).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Let f:(C" xC,{0} x C) —» (C,0), (z1,---»2n, ) > f(Z15--+»Zn,t) = f1 (21, ..., 24), With n > 3, be a germ (at
the origin) of holomorphic function such that, for alhear 0, the gerny; is reduced. Let s, be themultiplicity of f;
at 0, that is, the number of points of intersection, near ;pf= ,‘1(0) with a generic (complex) line i€” passing
arbitrarily close to 0 but not through 0. As we are assuming thé reducedy, is also theorder of f; at 0, that is,
the lowest degree in the power series expansiofi at 0. Letu ¢, be the Milnor number off; at 0. One says thatf;);
is topologically constanfrespectively-constantequimultiplg if, for all z near 0, there is a germ of homeomorphism
¢; - (C*,0) — (C",0) such thaip(Vy,) = Vy, (respectivelyuy, = s, vy, = vy). In the special case wherg;); is
a family of isolatedsingularities (i.e., when, for all near 0, f; has an isolated critical point at 0),if# 3, then the
topological constancy is equivalent to theconstancy (cf. Lé [7], Teissier [16] and Lé and Ramanujam [8]).

In [21], Zariski asked the following questioif: ( f;), is topologically constant, then is it equimultiplé®ore
than thirty years later, the question is, in general, still unsettled (even for isolated hypersurface singularities). The
answer is, nevertheless, known toyssin several special cases: for example, for families of plane curve singularities
(Zariski [22]), families of convenient Newton nondegenerate (isolated) singularities (Abderrahmane [1] and Saia and
Tomazella [15]), families of semiquasihomogeneous or quasihomogeneous isolated sindu(@ites! [4] and
O’Shea [13]), families of isolated singularities of the foyixz) = a(z) + 6 (¢)b(z), wherea, b : (C", 0) — (C, 0) and
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0:(C,0) — (C,0), 6 #0, are germs of holomorphic functions (Greuel [4] and Trotman [19,20]). For a detailed and
more complete list, see the recent author’s survey article [3].
In this Note, we concentrate our attention on familfes: (f;), of the following form:

[l ) =81 2ne1) + 220 (210 s 2)s
where

g:(C"1 x C, {0} x C) — (C, 0), (Lo 2ne1 D) > (20 e Zne 1, 1) = 81(Z0, -+ oy Zn1)s
and

hi(C"xC, {0} xC) > (C,0),  (z1,....2m D) > (21, ... 2, ) = hy(21, ..., 2n),

are germs of holomorphic functions such that, foralkar 0, the gerrg; (and f;) is reduced.
In [5], Greuel and Pfister already considered families of this type and they proved the following result:

Theorem 1 (Greuel and Pfister [5, Proposition 3.2)et f = (f;); with fi(z1,...,20) = g:(z1,...,2n—-1) +
z,%h,(zl,...,zn) as above. Suppose that, for allhear 0, the germf; has an isolated critical point a® and the
germgo is semiquasihomogeneo(a the germyf; has an isolated critical ab and»n = 3). If (f;), is topologically
constant, therg,); is equimultiple. In particular, if, moreover, for allnear0, the multiplicity atO of g; is less than
or equal to the order a0 of the(nonreducedlgerm(zs, ..., z,) — z,zlh,(zl, ..., Zn), then(fy), is equimultiple.

We extend here Greuel—Pfister’s result (concermsotptedsingularities) to a special class of higher dimensional
singularities. We also prove similar results in the case whgrall smallz, is convenient Newton nondegenerate or
of the forma(z’) 4+ 0(1)b(7), wherez’ = (z1, ..., Zu—1).

Theorem 2. Let f = (f;); with fi(z1,...,20) = & (21, ..., Zn—1) +z5h,(z1, ..., z,) as above. Assume that, for all
near 0, the germf; has ans-dimensional aligned singularity & Also suppose thdtf;); is topologically constant.
Let () be an infinite sequence of pointsthtending to0. Assume that the coordinates= (z1, ..., z,), Of some
cyclic permutation of them, form an aligning set of coordinate8 fatr fy and for f;, , for all k € N. Finally suppose
that at least one of the following four conditions is satisfied

(i) for all # nearO0, the germg; is convenient and has a nondegenerate Newton principal part with respect to the
coordinates’ = (z1, - - -, Zn—1);
(i) for all + near 0, the germg, is of the formg;(z') = a(z’) + 6(1)b(z)), wherea, b: (C"~1,0) — (C,0) and
0:(C,0)— (C,0), 0 #£0, are germs of holomorphic functions
(iii) go is the germ of a semiquasihomogeneous polynomial with respggt to
(iv) n=3.

Then(g;), is equimultiple. In particular, if, moreover, for allnearO0, the multiplicity atO of the germg; is less than
or equal to the order a0 of the(nonreducedlgerm(zs, ..., z,) — z,%h,(zl, ..., Zn), then(f;), is equimultiple.

For the definition ofalignedsingularities andiligning sets of coordinates, see Massey [9]. For the basic material
about Newton polyhedra, we refer to Kouchnirenko [6] and Oka [11,12].

Aligned singularities were introduced by Massey in [9]. They generalize isolated singularities (obtaineedGpr
and smooth one-dimensional singularities (in particular line singularities). Regarding this class of singularities,
Massey proved the followingeductiontheorem:

Theorem 3 (Massey [9, Theorem 7.9]The following are equivalent

() for all n > 4, the answer to Zariski's multiplicity question is positive for familigs); of reduced analytic
hypersurfaces with isolated singularities

(i) for all n > 4, there exists an integer such that the answer to Zariski’'s multiplicity question is positive for
families (f;), of reduced analytic hypersurfaces witkdimensional aligned singularitie@.e., for all ¢+ near0,
ft has ans-dimensional aligned singularity &);
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(i) forall n > 4, for all integers, the answer to Zariski's multiplicity question is positive for famili¢s; of reduced
analytic hypersurfaces withrdimensional aligned singularities.

The proof of Theorem 2 is a combination of Massey'’s proof of Theorem 3 and Greuel—-Pfister’s proof of Theorem 1,
together combined with the results of Zariski [22], Abderrahmane [1], Saia and Tomazella [15], Greuel [4], O’'Shea
[13] and Trotman [19,20]. Note, nevertheless, that Theorem 2 is not an immediate consequence of Theorems 3 and
(cf. Remark 1).

Theorem 2 answers positively Zariski’s multiplicity question for special classes of high-dimensional singularities
without any assumption on the topological constancy, that is, without any assumption on the homeomarpMéns
recall that, under some additional hypotheses orpthse positive answers to Zariski’'s question for high-dimensional
singularities already exist. For example, it is known that the multiplicity is an embadtewariant (cf. Ephraim [2]
and Trotman [17,18,20]) and an embedded ‘right—left bilipschitz’ invariant (cf. Risler and Trotman [14]).

Let us give an example where Theorem 2 applies.gset, z2) = z2 + z3 + (1 — 1)z5 andh, (21, 22, 23) = 123,
so thatf; (z1, 22, 23) = 22 + 25 + (1 — 1)z5 + z5¢z3. For all ¢ sufficiently close to 0, the singular locus ¢f is just
the zz-axis (so, f; has an 1-dimensional aligned singularity at 0). The coordinatesz, z3) are not aligning, but
one checks easily thats, z1, z2) are aligning forf;, all 7. Since the singular locus of: (z1, z2, z3,t) — zf + z% +
(1—1)z3 + 73122 is nothing but the plane if* defined byz; = z, = 0 and the Milnor number of; ., : (z1, z2)
22+ 23+ (1— 1z} + z41z3 is independent of andz3 (in fact, ., ., = 1 for all, z3 near 0), it follows from Massey
[10, Proposition p. 47] thatf;), is topologically constant. Hence Theorem 2(iv) applies. Sgds convenient and
Newton nondegenerate with respect(tq, z2) and semiquasihomogeneous with respectzto z»), this example
also shows that the special classes of high-dimensional singularities that we consider in the cases (i) and (iii) (and
obviously, (ii) too) are not empty.

Now, let us sketch the proof of Theorem 2. We start as in [9, Proof of Theorem 7.9%. £dit1, ..., ¢,) be a
cyclic permutation of the coordinates= (z1, ..., z,). We use the notatiot, := z, for the ‘special’ coordinate,,.
Suppose that is aligning for fy and for f;, at 0, allk. Then, since f;); is a topologically constant family of aligned
singularities, the Lé numbers (cf. [9, Definition 1.11})0’4 (0<i <n—1)of fp at 0 with respect tq are equal
to the Lé number&fﬁk’{ of f;, at 0 with respect ta@, for all k¥ large enough (cf. [9, Corollary 7.8]). Hence, by an
inductive application of the Massey’s generalized lomdine—Lé formula (cf. [9, Theorem 4.5 and Corollary 4.6]), for
allintegersja, ..., js such that 0« ji < jo < - -+ < js, the germsfo+¢{* +- -+ ¢ and f,, +¢i* +--- + ¢ have
an isolated singularity at 0 and the same Milnor number at 0, providedarge enough.In particular, by the upper
semicontinuity of the Milnor number, this implies that, for abufficiently close to 0, the gerrfi + gl” 4+ g
has an isolated singularity at 0 and the same Milnor number, at 3, aglfl +---+¢{. In other words, the family
(fi+&{*+---+¢)): is apu-constant family of isolated singularities. This implies, in particular, ghat¢]* +- - - ¢,
where, if 1< p <, the termg,i” is omitted, has an isolated singularity 4tfor all smallz. Hence, as in [5, Proof of
Proposition 3.2], by applying [5, Lemma 3.1] to the familg + ¢;* + - - - + ¢/*) with the hyperplane i©" defined
by ¢, =0, one gets thatg, + ¢i* +- - - +¢*),, where again, if K p <s, the term{f,” is omitted, is also a-constant
family of isolated singularities. Now, according to the case (i) or (iii) that we consider, it follows from our hypotheses
that, if the j;’s are chosen sufficiently large, then for alkufficiently close to 0, the gerrp, + {l“ + o+ 0
(;1{” omitted) is convenient and has a nondegenerate Newton principal part with respect to the coard{nases(i))
orgo+ ;_111 +o (;Iﬁ” omitted) is the germ of a semiquasihomogeneous polynomial with respgdidase (iii)).

Since thej;’s can be chosen arbitrarily large, Theorem 2 then follows from the results of Abderrahmane [1] and Saia
and Tomazella [15] (case (i)), Greuel [4] and Trotman [19,20] (case (ii)), Greuel [4] and O’Shea [13] (case (iii)), and
Zariski [22] (case (iv)).

3 According to [9], since we are using the coordinates . . ., ¢,) for the germf;, we use the coordinatgs= (Cs415 Cs425 -+ iy Clyeees Ls)
for the germf; +¢{* + - + ¢ .
4 For the germg;, we use the coordinates = (¢1, ..., ¢n), whereg, is omitted. For the gerng, + ¢{* + - + ¢, where, if 1< p <, the

term {[,p is omitted, we use the coordinatg’s= (Cs4+15 Cs425 -+ Cna 81y eees ¢s), Whereg ), is omitted.



186 C. Eyral / C. R. Acad. Sci. Paris, Ser. | 342 (2006) 183-186

Remark 1. If one replaces the worgemiguasihomogeneobyg quasinomogeneous Theorem 2(iii), the argument
above doesiot work. Indeed, in this casep + 4“1“ 4+ (;;" is omitted) is neither quasihomogeneous with

an isolated singularity nor semiquasihomogeneous, so that we cannot apply the result of Greuel [4] and O’She
[13] (we recall that a quasihomogeneous polynomiaias semiquasihomogeneous if it has a nonisolated critical
point at 0). By contrast, one can replasemiquasihomogeneoby quasihomogeneoua Theorem 1. Indeed, the
hypothesis for thef;'s of having an isolated critical point at O automatically implies a similar property fogttse

and, consequently, i§o is quasihomogeneous, then it is necessarily semiquasihnomogeneous too. This shows tha
Theorem 2 is not an immediate consequence of Theorems 3 and 1. Note that one carsezpilgeasihomogeneous

by quasihomogeneous with an isolated singulairityf heorem 2(iii).
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