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Abstract

In this Note, using an idea due to Thomason, we define a “homology theory” on the category of rings which satisfies
exactness, homotopy (in the algebraic sense) and periodicity of order 4. For regular noetherian rings, we find Balmer’s hi
groups. For more general rings, this homology is isomorphic to theKT-theory of Hornbostel, inspired by the work of William
For real or complexC∗-algebras, we recover – up to 2 torsion – topologicalK-theory.To cite this article: M. Karoubi, C. R. Acad.
Sci. Paris, Ser. I 342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Stabilisation du groupe de Witt. En utilisant une idée due à Thomason, nous définissons dans cette Note une « thé
l’homologie » sur la catégorie des anneaux qui satisfait aux propriétés d’excision, d’exactitude, d’homotopie (au sens al
et de périodicité d’ordre 4. Pour les anneaux noethériens réguliers, nous retrouvons les groupes de Witt supérieurs d
Pour des anneaux plus généraux, cette homologie est isomorphe à laKT-théorie définie par Hornbostel et inspirée par le travai
Williams. Pour les algèbres stellaires, réelles ou complexes, nous retrouvons – à la 2 torsion près – laK-théorie topologique.Pour
citer cet article : M. Karoubi, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1.

Let A be a ring with an anti-involutiona �→ ā and letε be an element of the center ofA such thatεε̄ = 1. We
assume also that 2 is invertible in the ring. There are now well known definitions of the higher hermitianK-group
(denoted byεLn(A), as in [5]) and the higher Witt groupεWn(A): this is the cokernel of the map induced by t
hyperbolic functor

Kn(A) −→ εLn(A)

where theKn(A) denote the QuillenK-groups (which are defined for all values ofn ∈ Z). One of the fundamenta
results of higher Witt theory is the periodicity isomorphism (whereZ′ = Z[1/2], cf. [4])

εWn(A) ⊗ Z′ ∼= −εWn−2(A) ⊗ Z′.
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It is induced by the cup-product with a genuine elementu2 ∈ −1L−2(Z′). By analogy with algebraic topology, we sh
call u2 the Bott element in Witt theory. This element is explicitly described in the following way. We consider the×2
matrix (with the involution defined bȳz = z−1 andt̄ = t−1 and where we putλ = λ̄ = 1/2), defined in [4] p. 243. Thi
2× 2 matrix represents an element of−1L0(Z′[t, t−1, z, z−1]) whose image in−1L−2(Z′) ∼= −1W−2(Z′) ∼= Z ⊕ Z/2
is a free generator (cf. [5] for the details).

2.

The higher Witt groupsεWn(A) have not all the nice formal properties one should expect. For instance, a ca
square of rings with anti-involutions (where the vertical maps are surjective)

A

�

A1

�

A2 A′

does not induce, in general, a long Mayer–Vietoris exact sequence of Witt groups

−→ εWn+1(A
′) −→ εWn(A) −→ εWn(A1) ⊕ εWn(A2) −→ εWn(A

′) −→ .

Following an idea due to Thomason [8], one may overcome this difficulty bystabilizingthe higher Witt groups. Mor
precisely, we define a new theoryεWn(A) as the limit of the inductive system

εWn(A) −→ −εWn−2(A) −→ εWn−4(A) −→ · · ·
where the arrows are induced by the cup-product with the Bott elementu2 mentioned above. As a matter of fact, t
periodicity mapεWn(A) −→ −εWn−2(A) can be factored as

εWn(A) −→ −εLn−2(A) −→ −εWn−2(A).

ThereforeεWn(A) is also the limit of the inductive system

εLn(A) −→ −εLn−2(A) −→ εLn−4(A) −→ · · · .

Theorem 2.1. This new theoryεWn(A) satisfies the following properties:

(a) Homotopy invariance.The polynomial extensionA → A[t], wheret̄ = t , induces an isomorphism

εWn(A) ∼= εWn

(
A[t]).

(b) Exactness and excision.From a cartesian square as above(with ψ surjective), one deduces an isomorphism
the associated relative groups

εWn(φ) ∼= εWn(ψ)

and therefore aMayer–Vietorisexact sequence for alln ∈ Z

−→ εWn+1(A
′) −→ εWn(A) −→ εWn(A1) ⊕ εWn(A2) −→ εWn(A

′) −→ .

(c) Periodicity.The cup-product with theBott element induces the isomorphisms

εWn(A) ∼= −εWn−2(A) ∼= εWn−4(A).

(d) Normalization.Let us assume now thatA is a regular noetherian ring. Then the natural map

εW0(A) −→ εW0(A)

is an isomorphism and the groupεW1(A) is isomorphic to the cokernel of the map defined in[5].

k0(A) −→ εW1(A).

Moreover, the groups1Wn(A) coincide with the higherWitt groups of Balmer[1].
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Sketch of the proof. Periodicity is imposed by the definition (as in Thomason’s theory). Homotopy invarian
a consequence of the same property for the Witt groups. Since theLn-groups satisfy the excision and exactn
properties forn < 0 (cf. [6] for instance), this is also true of the theoryεWn: as we have noticed before,εWn(A) is
also the limit of the inductive system

εLn(A) −→ −εLn−2(A) −→ εLn−4(A) −→ .

The rest of the theorem follows immediately from [5], Theorem 4.3 and from next theorem.�
Theorem 2.2. The homologyεW∗(A) is isomorphic to the KT* -theory of Hornbostel(cf. [3], Section5).

Proof. ThisKT-theory is the direct limit of the system

εLn(A) −→ εLn(UA) −→ · · · −→ εLn

(
Ur

A

) −→
whereUA is the ring defined in [5], p. 263 andUr

A the r-iteration of the “U -construction”. All the arrows above a
L∗-module maps as defined in [4] p. 233 and [5] p. 276. This implies that the homomorphism

εLn(A) −→ εLn

(
Ur

A

)

is the cup-product with a well defined elementwr in 1L0(U
r
Z′) (this is probably related to the question 6.6 rais

by Hornbostel in his paper [3]). On the other hand, as a consequence of the fundamental theorem of h
K-theory (cf. [5] p. 264), we have an isomorphism ofL∗-modules betweenεLn(U

r
A) and εLn(U

r+4
A ) (as noticed

also by Williams [9]). Therefore, the previous direct limit is simply the limit of the system

εLn(A) −→ εLn−4(A) −→ · · ·
where the arrows are defined by the cup-product with a specific elementw in 1L−4(Z′). On the other hand, w
know that if we apply this construction to the ringA = Z′ andε = 1, we find an isomorphism between1W0(Z

′) and
1L−4(Z′) = 1W−4(Z′) (because the ringZ′ is regular). As a matter of fact, we find a chain of isomorphisms

1W0
(
Z′) ∼= 1L0

(
U2

Z′
) ∼= 1L0

(
U3

Z′
) ∼= 1L0

(
U3

Z′
) ∼= 1L0

(
U4

Z′
) ∼= 1L−4

(
Z′).

I claim thatw, the image of 1 by this chain of isomorphisms, is(u2)
2 up to a unipotent element. This is exactly t

well known computation of the classical Witt ring ofZ′ which isZ ⊕ Z/2 generated by the classes of the follow
elements in the Grothendieck Witt group:〈x2〉 and〈x2〉 − 〈2x2〉. �

If A is regular noetherian andε = 1, Hornbostel has proved moreover in [3] thatKTn(A) is isomorphic to the
n-Witt group defined by Balmer, which proves the last part of Theorem 2.1.

Remark 1. For simplicity’s sake, we have just considered hermitianK-theory groups. One could have taken
well homotopy colimits of the corresponding classifying spaces, using for instance the machinery develope
Section 1, greatly generalized by Schlichting.

Remark 2. Using [2] and most of the above properties of the theoryεWn, Schlichting was able to prove cdh desc
for the theoryεW∗ extended to the category of (commutative) schemes of finite type over a field of characteristi

3.

WhenA is a Banach algebra, we may consider the topological analogs of the previous definitions. In that c
groupεW

top
n (A) is simply isomorphic toεW

top
n (A) ⊗ Z′. One should also notice thatεW

top
n (A) ⊗ Z′ is isomorphic to

εWn(A) ⊗ Z′ as a consequence of the periodicity theorem and the well-known computation ofεW0 andεW1. Finally,
if A is aC∗algebra, it is also well known that1W

top
n (A) is isomorphic to the topologicalK-theory ofA.
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