

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 342 (2006) 417-420

http://france.elsevier.com/direct/CRASS1/

Differential Geometry

Floer homology for almost Hamiltonian isotopies

Augustin Banyaga^a, Christopher Saunders^b

^a Department of Mathematics, Pennsylvania State University, 218 McAllister Building, University Park, PA 16803, USA
 ^b Department of Mathematics, Westminster College, Fulton, MO 65251, USA

Received 26 September 2005; accepted after revision 4 January 2006

Available online 7 February 2006

Presented by Charles-Michel Marle

Abstract

Seidel introduced a homomorphism from the fundamental group $\pi_1(\text{Ham}(M))$ of the group of Hamiltonian diffeomorphisms of certain compact symplectic manifolds (M, ω) to a quotient of the automorphism group $\text{Aut}(HF_*(M, \omega))$ of the Floer homology $HF_*(M, \omega)$. We prove a rigidity property: if two Hamiltonian loops represent the same element in $\pi_1(\text{Diff}(M))$, then the image under the Seidel homomorphism of their classes in $\pi_1(\text{Ham}(M))$ coincide. The proof consists in showing that Floer homology can be defined by using 'almost Hamiltonian' isotopies, i.e. isotopies that are homotopic relatively to endpoints to Hamiltonian isotopies. *To cite this article: A. Banyaga, C. Saunders, C. R. Acad. Sci. Paris, Ser. I 342 (2006).* © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Homologie de Floer pour les isotopies presques hamiltonniennes. Seidel a introduit un homomorphisme du groupe fondamental $\pi_1(\text{Ham}(M))$ du groupe des difféomorphismes Hamiltoniennes de certaines variétés symplectiques compactes (M, ω) dans un quotient du groupe Aut $(HF_*(M, \omega))$ des automorphismes de l'homologie de Floer $HF_*(M, \omega)$. Nous démontrons que si deux lacets Hamiltoniennes representent le même élément dans $\pi_1(\text{Diff}(M))$, alors les images par l'homomorphisme de Seidel de leurs classes dans $\pi_1(\text{Ham}(M))$ coïncident (un phénomène de rigidité). La preuve consiste à montrer que l'homologie de Floer peut être définie en utilisant des isotopies presques Hamiltoniennes, c'est-à-dire des isotopies qui sont homotopes, relativement aux extrémités à des isotopies Hamiltoniennes. *Pour citer cet article : A. Banyaga, C. Saunders, C. R. Acad. Sci. Paris, Ser. I 342* (2006).

© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

A symplectic manifold is a manifold M which is equipped with a closed, non-degenerate 2-form ω . Nondegeneracy means that the interior product $i_X \omega$ of a vector field X with ω induces a bundle isomorphism from TM to T^*M . Given $H \in C^{\infty}(M \times \mathbb{R})$, this isomorphism defines a family of vector fields X_{H_t} on M by $i_{X_{H_t}} \omega = dH_t$, where $H_t(x) = H(x, t)$. Integration of this family of vector fields leads to an isotopy $\theta^H = (\theta_t^H)$ of M. We say that θ^H

E-mail addresses: banyaga@math.psu.edu (A. Banyaga), saundec@westminster-mo.edu (C. Saunders).

¹⁶³¹⁻⁰⁷³X/ – see front matter © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2006.01.001

is the Hamiltonian isotopy generated by H. The set of all time one maps of Hamiltonian isotopies forms a subgroup of Diff(M), called the group of Hamiltonian diffeomorphisms, and it will be denoted Ham(M) herein.

We are in general interested in the inclusion $i: \operatorname{Ham}(M) \to \operatorname{Diff}(M)$ and the induced map $i_*: \pi_1(\operatorname{Ham}(M)) \to \pi_1(\operatorname{Diff}(M))$. In [6], Seidel introduced an extension of $\pi_1(\operatorname{Ham}(M))$, denoted \widetilde{G} , and a homomorphism $\widetilde{\sigma}: \widetilde{G} \to \operatorname{Aut}(HF_*(M, \omega))$, where $HF_*(M, \omega)$ is the Floer homology of (M, ω) . (At this point, $\widetilde{\sigma}$ is only well defined under certain conditions on (M, ω) .) There is thus an induced homomorphism

$$\sigma: \pi_1(\operatorname{Ham}(M)) \to \operatorname{Aut}(HF_*(M,\omega))/\Theta$$

The main point of this Note is to sketch a proof of the following theorem (under the conditions necessary to define σ .)

Theorem 1.1. Let g_0 and g_1 be smooth loops at id in Ham(M), and let $[g_0]$ and $[g_1]$ be their respective classes in $\pi_1(\text{Ham}(M))$. Then, if g_0 and g_1 define the same element of $\pi_1(\text{Diff}(M))$, then $\sigma([g_0]) = \sigma([g_1])$.

In other words, this theorem says that ker $i_* \subset \ker \sigma$. This gives more evidence for what has been called the 'topological rigidity' of the group Ham(M) [4].

In order to prove this theorem, we observe that σ is induced by a map $\hat{\sigma}$ with domain *G* consisting of smooth loops at id in Ham(*M*) (rather than $\pi_0(G) = \pi_1(\text{Ham}(M))$). We extend the domain of $\hat{\sigma}$ to the possibly larger group $D := \{\text{smooth loops in Diff}(M) \text{ at id which are homotopic to a Hamiltonian loop}\}.$

Elements of D will be called *almost Hamiltonian* loops.

Theorem 1.1 is proved by showing that the extended map is well-defined on $\pi_0(D) = i_*(\pi_1(\text{Ham}(M)))$.

2. Floer homology and Seidel's homomorphism [5,6]

Let $\mathcal{J}(M, S^1)$ denote the space of smooth time dependent 1-periodic almost complex structures on M. Let $\mathcal{J}(M, \omega, S^1) \subset \mathcal{J}(M, S^1)$ be the subspace of ω -compatible almost complex structures. There are Chern classes $c_i \in H^{2i}(M, \mathbb{Z})$ associated to the symplectic manifold (M^{2n}, ω) , and throughout this note, we will assume the semipositive condition W^+ given in [6]. While the new ideas in this note do not depend on this assumption, it is thus far necessary in defining Seidel's homomorphism.

Let $\mathcal{L}M$ denote the space of smooth, contractible loops in M, and let $p: \widetilde{\mathcal{L}M} \to \mathcal{L}M$ be the covering space given in [3]. For $H \in C^{\infty}(M \times S^1)$, let $\mathcal{P}(H) \subset \mathcal{L}M$ consist of 1-periodic contractible orbits of the Hamiltonian isotopy θ^H generated by the function H.

Let $(H, J) \in C^{\infty}(M \times S^1) \times \mathcal{J}(M, \omega, S^1)$ be a regular pair [2,3,6]. We denote by $HF_*(M, \omega, H, J)$ the Floer homology groups defined using the pair (H, J), which is essentially constructed using the set $\mathcal{P}(H) := p^{-1}(\mathcal{P}(H))$.

Any $g \in G$ gives a map $g: \mathcal{L}M \to \mathcal{L}M$ by $(g \cdot x)(t) = g_t(x(t))$. Let \widetilde{G} be the group of all lifts of elements of G to homeomorphisms of $\widetilde{\mathcal{L}M}$. This gives an exact sequence of topological groups $1 \to \Gamma \to \widetilde{G} \to G \to 1$, where Γ is the group of deck transformations of the covering map p.

For $g \in G$, a new regular pair (H^g, J^g) is defined in such a way that

$$g \cdot \mathcal{P}(H^g) = \mathcal{P}(H). \tag{1}$$

After lifting to $\tilde{g} \in \tilde{G}$, this induces a map between the Floer chain complexes $CF_*(M, \omega, H^g)$ to $CF_*(M, \omega, H)$. The almost complex structure J^g is defined so that this is a chain map, and this gives an isomorphism on the level of homology, which we still call \tilde{g} .

There is a continuation isomorphism Φ between the Floer homology groups defined using any two regular pairs. Let Φ denote the continuation isomorphism between $HF_*(M, \omega, H^g, J^g)$ and $HF_*(M, \omega, H, J)$. Then we get an automorphism of $HF_*(M, \omega, H, J)$ by

$$HF_*(M,\omega,H,J) \xrightarrow{\Phi} HF_*(M,\omega,H^g,J^g) \xrightarrow{\tilde{g}} HF_*(M,\omega,H,J).$$
⁽²⁾

This automorphism commutes with the continuation isomorphism to the Floer homology defined using any other regular pair, and if $g_0, g_1 \in G$ are connected through smooth Hamiltonian loops, then the corresponding isomorphisms agree. This describes a map

$$\tilde{\sigma}: \pi_0(G) \to \operatorname{Aut}(HF_*(M,\omega))$$

After quotienting by the image of Γ in Aut($HF_*(M, \omega)$), we obtain the map σ .

3. Sketch of the proof of the main result

First notice that it is a near triviality to see that if two functions H^0 and H^1 generate the same Hamiltonian isotopy, then $HF_*(M, \omega, H^0, J) = HF_*(M, \omega, H^1, J)$ (as long as both (H^0, J) and (H^1, J) are regular pairs). This means that Floer homology can be rephrased in terms of Hamiltonian isotopies.

The isotopy generated by the function H^g is given by $\theta_t^{H^g} = g_t^{-1} \theta_t^H$. We define an action of D on the set of all isotopies of M by $(g * \theta)_t := g_t^{-1} \theta_t$, and in this language, $\theta^{H^g} = g * \theta^H$.

Thus, we can rephrase (2) as

$$HF_*(M,\omega,\theta,J) \xrightarrow{\Phi} HF_*(M,\omega,g*\theta,J^g) \xrightarrow{\tilde{g}} HF_*(M,\omega,\theta,J).$$
(3)

This suggests a method of extending the domain of $\hat{\sigma}$ to the group *D*: we extend the space of available choices in defining $HF_*(M, \omega)$ to include pairs $(g * \theta, J^g)$ for $g \in D$ and Hamiltonian isotopies θ .

Notice that for $g \in D$ and a Hamiltonian isotopy θ , $g * \theta$ is homotopic, relative endpoints, to a Hamiltonian isotopy. Such isotopies will be called *almost Hamiltonian*, and we denote the group of all almost Hamiltonian isotopies by \mathcal{I} . There is an analogous extension $1 \to \Gamma \to \widetilde{D} \to D \to 1$, where \widetilde{D} consists of lifts of the action of D on $\mathcal{L}M$ to homeomorphisms of $\widetilde{\mathcal{L}M}$.

Such isotopies may not preserve ω , so we need to adjust the compatibility requirements on J.

For $\psi \in \mathcal{I}$, we let $\mathcal{J}^{\psi}(M, \omega, S^1) = \{J \in \mathcal{J}(M, S^1) \mid J_t \in \mathcal{J}(M, (\psi_t^{-1})^*\omega)\}$. We then let \mathcal{F} denote all pairs (ψ, J) with $\psi \in \mathcal{I}$ and $J \in \mathcal{J}^{\psi}(M, \omega, S^1)$. It is best to think of \mathcal{F} as a bundle over \mathcal{I} , with fiber over $\psi \in \mathcal{I}$ given by $\mathcal{J}^{\psi}(M, \omega, S^1)$.

Theorem 3.1. There is a dense subset of \mathcal{F} , denoted \mathcal{F}_{reg} , such that for all pairs $(\psi, J) \in \mathcal{F}_{reg}$, we can define Floer homology groups $HF_*(M, \omega, \psi, J)$. These groups are naturally independent of the choice of pair used to define them, and they recover the standard Floer homology groups $HF_*(M, \omega)$.

The Floer homology groups $HF_*(M, \omega, \psi, J)$ in this theorem are constructed as in the Hamiltonian case, but we replace the Hamiltonian function by the generated isotopy. More precisely, for $\psi \in \mathcal{I}$, let X_t^{ψ} be the corresponding family of vector fields on M obtained by differentiation (see [1]), and set

$$\mathcal{P}(\psi) := \left\{ x \in \mathcal{L}M \mid \dot{x}(t) = X_t^{\psi}(x(t)) \right\}, \qquad \widetilde{\mathcal{P}(\psi)} := p^{-1}(\mathcal{P}(\psi)).$$

For certain (non-degenerate) isotopies, there is an index map $\mu_{\psi} : \widehat{\mathcal{P}}(\psi) \to \mathbb{Z}$, which reduces to the Conley– Zehnder index in the Hamiltonian case. Notice that any homotopy from ψ to a Hamiltonian isotopy θ provides an identification $b : \widetilde{\mathcal{P}}(\psi) \to \widetilde{\mathcal{P}}(\theta)$. The index in the almost Hamiltonian case is well defined by setting $\mu_{\psi}(c) = \mu_{\theta}(b(c))$.

This graded set is used to create a chain complex, with a boundary operator defined as follows. For smooth $u: \mathbb{R} \times S^1 \to M$, define $\bar{\partial}_{\psi, J}(u) \in C^{\infty}(u^*TM)$ by

$$\bar{\partial}_{\psi,J}(u) = \frac{\partial u}{\partial s} - J_t \left(\frac{\partial u}{\partial s} + X_t^{\psi} \right). \tag{4}$$

For $c_{\pm} \in \widetilde{\mathcal{P}(\psi)}$, let $\mathcal{M}(c_{-}, c_{+}, \psi, J)$ consist of all smooth maps $u : \mathbb{R} \times S^{1} \to M$ which satisfy $\overline{\partial}_{\psi, J}(u) = 0$, and which lift to a map $\tilde{u} : \mathbb{R} \to \widetilde{\mathcal{L}M}$ with $\lim_{s \to \pm \infty} \tilde{u}(s) = c_{\pm}$. There is an \mathbb{R} -action on $\mathcal{M}(c_{-}, c_{+}, \psi, J)$ by translation in the *s*-variable, and we denote the quotient space by $\mathcal{M}(c_{-}, c_{+}, \psi, J)/\mathbb{R}$.

The boundary operator in classical Floer homology consisted of counting the number of elements of $\mathcal{M}(c_-, c_+, \psi, J)/\mathbb{R}$. We would like to do the same, so we show that if $\mu_{\psi}(c_-) - \mu_{\psi}(c_+) = 1$, then $\mathcal{M}(c_-, c_+, \psi, J)/\mathbb{R}$ is finite.

In the Hamiltonian case (when ψ is a Hamiltonian isotopy), there are two basic reasons which allow us to count $\mathcal{M}(c_-, c_+, \psi, J)/\mathbb{R}$. The first is the ellipticity of (4), and the second is a uniform bound on the energy $E(u) = \int_{\mathbb{R}\times S^1} |\frac{\partial u}{\partial s}(s, t)|^2$. The ellipticity gives that $\mathcal{M}(c_-, c_+, \psi, J)$ is a manifold, and the energy bound gives compactness (in the 0-dimensional case). The energy bound is proved by noticing that solutions to $\overline{\partial}_{\theta^H, J}(u) = 0$ satisfy the equation $\nabla a_H(\tilde{u}) = \frac{d\tilde{u}}{ds}$ for any lift $\tilde{u} : \mathbb{R} \to \widetilde{\mathcal{L}M}$, where a_H is the action functional. This implies that the energy of $u \in \mathcal{M}(c_-, c_+, \theta^H, J)$ is given by $E(u) = a_H(c_-) - a_H(c_+)$.

In the almost Hamiltonian case, we can establish the same facts: the term involving the vector field does not affect the ellipticity because it is of lower order. To give a bound on the energy, we decompose $(\psi, J) \in \mathcal{F}$ as $g * \theta^H$ for some $g \in D$ and Hamiltonian isotopy θ^H , and choose any lift $(g, \tilde{g}) \in \tilde{D}$. The pair $(\psi, J) \in \mathcal{F}$ induces a metric \tilde{h} on $\widetilde{\mathcal{L}M}$. Then lifts \tilde{u} of solutions to $\overline{\partial}_{\psi,J}(u) = 0$ satisfy $\nabla \tilde{g}^* a_H(\tilde{u}) = \frac{d\tilde{u}}{ds}$, because for all $\xi \in T_{\tilde{u}(s)} \widetilde{\mathcal{L}M}$,

$$\tilde{h}\left(\nabla \tilde{g}^* a_H(\tilde{u})(s), \xi\right) = \tilde{g}^*(da_H)\left(\tilde{u}(s)\right)(\xi) = \int_0^1 \psi_t^* \omega\left(\dot{x}(t) - X_t^{g^{*\theta^H}}(x(t)), J_t Dp\xi(t)\right) dt$$

where x(t) = u(s, t). But this is exactly $\tilde{h}(\frac{d\tilde{u}}{ds}(s), \xi)$. Thus, for $u \in \mathcal{M}(c_{-}, c_{+}, \psi, J)$, $E(u) = \tilde{g}^* a_H(c_{-}) - \tilde{g}^* a_H(c_{+})$. We then define a boundary operator via counting exactly as in the Hamiltonian case, and show that $\partial^2 = 0$.

To prove the independence of the choice of pair, we define a *homotopy of regular pairs* as a map $\Phi : \mathbb{R} \to \mathcal{F}$ which is fixed outside of [-1, 1]. A map between the corresponding chain complexes can be defined by counting cylinders which satisfy a two-parameter version of (4). These sets can be counted for the same reasons as described above.

Theorem 3.1 can now be used to extend the domain of $\tilde{\sigma}$ to \tilde{D} by (3). The final step is proving that this map is well defined on $\pi_0(\tilde{D})$. This is accomplished by combining Seidel's proof with the above ideas.

References

- [1] A. Banyaga, The Structure of Classical Diffeomorphism Groups, Kluwer Academic Press, 1997.
- [2] A. Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989) 575-611.
- [3] H. Hofer, D. Salamon, Floer homology and Novikov rings, in: The Floer Memorial Volume, Birkhäuser, Basel, 1995, pp. 483–524.
- [4] F. Lalonde, D. McDuff, L. Polterovich, Topological rigidity of Hamiltonian loops and quantum homology, Invent. Math. 135 (2) (1999) 369– 385.
- [5] D. Salamon, Lectures on Floer homology, in: Symplectic Geometry and Topology, Park City, UT, 1997, in: IAS/Park City Math. Ser., vol. 7, Amer. Math. Soc., Providence, RI, 1999, pp. 143–229.
- [6] P. Seidel, π_1 of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 (1997) 1046–1095.