
C. R. Acad. Sci. Paris, Ser. I 342 (2006) 751–754
http://france.elsevier.com/direct/CRASS1/

Algebraic Geometry/Topology

Motives and modules over motivic cohomology

Oliver Röndigs a, Paul Arne Østvær b

a Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany
b Department of Mathematics, University of Oslo, NO-0316 Oslo, Norway

Received 14 December 2005; accepted after revision 14 March 2006

Available online 18 April 2006

Presented by Pierre Deligne

Abstract

In this Note we summarize the main results and techniques in our homotopical algebraic approach to motives. A major part of this
work relies on highly structured models for motivic stable homotopy theory. For any noetherian and separated base scheme of finite
Krull dimension these frameworks give rise to a homotopy theoretic meaningful study of modules over motivic cohomology. When
the base scheme is Spec(k), for k a field of characteristic zero, the corresponding homotopy category is equivalent to Voevodsky’s
big category of motives. To cite this article: O. Röndigs, P.A. Østvær, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Motifs et modules sur la cohomologie motivique. Dans cette Note, nous présentons nos résultats principaux et les techniques
utilisées dans notre étude des motifs, qui est basée sur la théorie d’homotopie. Une partie importante de ce travail utilise des modèles
hautement structurés pour la théorie d’homotopie stable motivique. Pour tout schéma de base noethérien, séparé et de dimension de
Krull finie, ces outils permettent l’étude de la théorie d’homotopie des modules sur la cohomologie motivique. Lorsque le schéma
de base est Spec(k), pour k un corps de caractéristique zéro, la catégorie homotopique obtenue est équivalente à la grande catégorie
des motifs introduite par Voevodsky. Pour citer cet article : O. Röndigs, P.A. Østvær, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

We introduce a category of motives for noetherian and separated base schemes of finite Krull dimension. Its con-
struction is based on highly structured models for the motivic stable homotopy category [2,6]. Further details are
presented in [9] and [10]. For fields of characteristic zero, Voevodsky’s big category of motives is shown to be equiv-
alent to the homotopy category of a homotopy theoretic category of motives. Throughout this Note we make use of
homotopical algebra.
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2. Main results

2.1. The unstable theory

Let Sm be the smooth Nisnevich site of a noetherian and separated scheme S of finite Krull dimension. There is a
linearization functor from Sm to the Suslin–Voevodsky category Cor of finite correspondences of S [13,16]. A pointed
motivic space is a pointed simplicial presheaf on Sm. A motivic space with transfers is a Z-linear functor from Corop

to simplicial abelian groups. Let M and Mtr denote the corresponding functor categories. In [9] it is noted that Mtr has
a tensor product ⊗tr. Any scheme U ∈ Sm defines a representable pointed motivic space U+ – by adding a disjoint
basepoint – and a representable motivic space with transfers U tr. Let Δn denote the standard n-simplex. There is
an evident forgetful functor u : Mtr → M induced by the graph functor Sm → Cor. Its left adjoint Ztr – the transfer
functor – is determined by

Ztr(U × Δn
)
+ = U tr ⊗tr Z

[
Δn

]
. (1)

In [9], we use the motivic model structure on M [2] to derive what we call the motivic model on Mtr.

Theorem 1. There exists a monoidal and simplicial model structure for motivic spaces with transfers such that u

detects and preserves motivic weak equivalences and fibrations.

The category Pretr of presheaves with transfers consists of Z-linear functors from Corop to abelian groups. For
fields, this category was introduced in [14]. Denote by

Mtr ⇐⇒ Ch+
(
Pretr) (2)

the Dold–Kan equivalence between motivic spaces with transfers and connective (positively graded) chain complexes
of presheaves with transfers. We may transport the motivic model on Mtr to a motivic model on Ch+(Pretr), turning
(2) into a Quillen equivalence. Moreover, this model structure can be extended without much trouble to non-connected
(unbounded) chain complexes of presheaves with transfers.

2.2. The stable theory

We are interested in stabilizing the motivic model structures using symmetric spectra [3]. Let S1
s denote the sim-

plicial circle. For motivic symmetric spectra MSS we suspend with respect to the cofibrant motivic space T = S1
s ∧ G

where G is a cofibrant replacement for (A1 \ {0},1). Applying the transfer functor to T , we obtain motivic symmetric
spectra with transfers, denoted by MSStr. Let Gtr

m be Ztr(A1 \ {0},1), and ChSStr
+,Gtr

m[1] the symmetric spectra of

connective chain complexes of presheaves with transfers with respect to Gtr
m shifted one degree. Similarly, we define

ChSStr
+,P1 by suspending with respect to Ztr(P1,1). Although the projective line (P1,1) pointed by 1 :S → P1 is not

cofibrant in the motivic model structure, Ztr(P1,1) is a cofibrant motivic space with transfers; this is relevant when
stabilizing the motivic model. By [9], there is a zig–zag of strict symmetric monoidal Quillen equivalences between
MSStr and MSStr

P1 . There exists a same type of zig–zag between ChSStr
+,P1 and ChSStr

+,Gtr
m[1]. Since Ztr(P1,1) is

cofibrant and discrete, the Dold–Kan equivalence (2) induces a lax symmetric monoidal Quillen equivalence between
MSStr

P1 and ChSStr
+,P1 [9]. The stable homotopy theoretic forerunner of this result was proved in [12].

Let MZ denote motivic cohomology, considered as an object of MSS (see the next section). In [10] we compare
MZ-mod with MSStr. Since the monoid axiom in [11] holds for motivic symmetric spectra [6], the module category
over motivic cohomology acquires a model structure. A map between MZ-modules is a weak equivalence if the
underlying map of motivic symmetric spectra is a stable weak equivalence.

Theorem 2. The model categories MZ-mod and MSStr are Quillen equivalent when the base scheme is Spec(k), for
k a field of characteristic zero.

Using the naturally induced Quillen equivalence between ChSStr
+,Gtr

m[1] and ChSStr
Gtr

m[1] – obtained from non-
connected chain complexes of presheaves with transfers – it is now relatively straightforward to show the equivalence



O. Röndigs, P.A. Østvær / C. R. Acad. Sci. Paris, Ser. I 342 (2006) 751–754 753
between the homotopy category Ho(MZ-mod) and Voevodsky’s big category of motives of Gtr
m-spectra of non-

connected chain complexes of Nisnevich sheaves with transfers having homotopy invariant cohomology sheaves.
The equivalence preserves both the monoidal and triangulated structures.

3. Outline of proofs

Theorem 1 is a ‘projective’ analogue for motivic spaces with transfers of the Morel–Voevodsky model structure for
motivic unstable homotopy theory [7]. Its construction is accomplished in three steps. First, one defines a model struc-
ture on Mtr by defining weak equivalences and cofibrations schemewise [2]. Second, following [5], one introduces
the local projective model structure in which weak equivalences between motivic spaces with transfers can be tested
on local Hensel rings. Third, following the guiding principle of inverting the affine line A1, the motivic projective
model structure is constructed by localizing the local projective model structure along the lines of [7]. An advantage
of working ‘projectively’ is that the motivic model structure is monoidal. In addition, fibrancy involves the standard
Nisnevich descent condition: Z is fibrant in the motivic model structure if and only if the canonical map A1 → S

induces a schemewise weak equivalence Z(−) → Z(A1 × −) and applying Z to any Nisnevich distinguished square
(where i is an open embedding, p is an étale map, and p−1(X \ i(U)) → X \ i(U) induces an isomorphism of reduced
schemes)

U ×X V V

p

U
i

X

(3)

yields a homotopy pullback square of simplicial abelian groups.
The proof of Theorem 2 makes use of recent developments of our understanding of the motivic stable homotopy

category. In particular, we work with motivic functors as a model for motivic stable homotopy theory [2], and we
employ Spanier–Whitehead duality (outlined in [15] and established in [4] and [8]).

Denote finitely presentable motivic spaces by fM. Motivic cohomology is the composite motivic functor

MZ : fM ⊆ M
Ztr−→ Mtr → M. (4)

The transfer functor Ztr : M → Mtr is strict symmetric monoidal and u is lax symmetric monoidal. Thus, evaluating
motivic cohomology on the sequence of finitely presentable motivic spaces S+, T ,T ∧2, . . . yields a commutative
motivic symmetric ring spectrum – also denoted by MZ – which is weakly equivalent to Voevodsky’s motivic
Eilenberg–MacLane spectrum [2]. An MZ-module is a motivic symmetric spectrum E with an action MZ ∧ E → E

satisfying the usual module conditions. Let MZ-mod denote the category of MZ-modules. As noted above, MZ-mod
acquires a stable model structure with weak equivalences and fibrations defined on underlying motivic symmetric
spectra. It also follows that the triangulated homotopy category Ho(MZ-mod) is generated by free MZ-modules of
shifted motivic symmetric suspension spectra of representable motivic spaces. Since every motivic symmetric spec-
trum with transfers has an evident MZ-module structure, there exists a functor Ψ : MSStr → MZ-mod preserving all
limits and filtered colimits. The latter implies there exists a left adjoint functor Φ : MZ-mod → MSStr. Theorem 1
implies that (Φ,Ψ ) is a Quillen adjoint pair such that Ψ detects weak equivalences of fibrant modules. Our goal is to
show it is a Quillen equivalence. Equivalently, the unit map MZ ∧ U+ → Ψ Φ(MZ ∧ U+) is a weak equivalence of
motivic symmetric spectra for every smooth quasi-projective S-scheme U [10].

We shall analyze the unit map using the category MF of motivic functors fM → M introduced in [2]. If X,Y ∈
MF, the enriched left Kan extension along the ‘sphere spectrum’ or unit I : fM ⊆ M extends X to an M-functor
I∗X : M → M. Set X ◦ Y := I∗X ◦ Y , where ◦ denotes composition of functors. There is a natural assembly map
X ∧Y → X ◦Y where ∧ is the symmetric monoidal product in MF. It is an isomorphism when Y is representable [2].
If X and Y are represented by A,B ∈ fM respectively, then the assembly map is the natural adjointness isomorphism
between M(A,−) ∧ M(B,−) – which is M(A ∧ B,−) by definition – and M(A,M(B,−)). A routine check shows
the evaluation of MZ ∧ (− ∧ B) → MZ ◦ (− ∧ B) at the sequence S+, T ,T ∧2, . . . coincides with the unit map
MZ ∧ B → Ψ Φ(MZ ∧ B). This reduces the proof of Theorem 2 to a question concerning assembly maps of motivic
functors.
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By [2], the structure of MF induces a monoidal product �, unit I, and internal hom objects [−,−] on the motivic
stable homotopy category. Then Z is dualizable if there is a canonical isomorphism

[Z, I] � Z → [Z,Z]. (5)

When S = Spec(k), for k a field of characteristic zero, and Z is a motivic functor represented by a smooth quasi-
projective k-scheme, then Z is dualizable by [4,8]. Suppose B is a cofibrant finitely presentable motivic space, and the
motivic functor − ∧ B is dualizable. If X preserves weak equivalences between cofibrant finitely presentable motivic
spaces, then the assembly map X ∧ (−∧B) → X ◦ (−∧B) is a weak equivalence [10]. We note the forgetful functor
Mtr → M preserves weak equivalences and fibrations. Thus, its left adjoint preserves weak equivalences between
cofibrant motivic spaces. It follows that motivic cohomology, defined by (4), preserves weak equivalences between
cofibrant finitely presentable motivic spaces. As a consequence of the theory developed, this suffices to conclude the
proof of Theorem 2.

In [10], working with rational coefficients and using alterations in the sense of de Jong [1], we obtain for perfect
fields a Quillen equivalence between MQ-mod and MSStr

Q.
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