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Abstract

We introduce a new energy functional for maps between two manifolds, the critical points of which (p-harmonic maps) are
solutions of a system of anisotropic quasilinear elliptic equations. In the case when the target is a homogeneous manifold with left
invariant metric, we establish a compactness result for the corresponding p-harmonic maps. The proof relies on some deep results
from harmonic analysis involving Hardy spaces. To cite this article: M. Sango, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Applications harmoniques anisotropes dans des variétés homogenes : un résultat de compacité. Nous introduisons une
nouvelle fonctionnelle d’énergie pour des applications sur des variétés ; les points critiques de cette fonctionnelle (applications
p-harmoniques) sont solutions d’un systeme d’équations elliptique, quasilinéaire, anisotrope. Dans le cas ou la variété cible
est homogene et munie d’une métrique invariante a gauche, nous établissons un résultat de compacité pour les applications
p-harmoniques correspondantes. La démonstration utilise un résultat fondamental d’analyse harmonique dans des espaces de
Hardy. Pour citer cet article : M. Sango, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let M be a smooth open set bounded in R” and N a n-dimensional compact smooth Riemannian manifold with
the metric g = (gi;)i, j=1,...n. Let p=(p1,..., pm) € R", with p, > 1. For a C'-map f:M — N, we introduce the
anisotropic p-energy:

m 1 oft 9fd Pa/2
E(f)=/2p—<gij(f(X))MiaMLa) dx; (D
M a=11%

(here and in the sequel we omit the summation symbol over the indices i and j) the critical points of which satisfy
the corresponding Euler-Lagrange equations,
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I=1,...,n, Fllj denotes the Christoffel symbols relative to the manifold N. This is a system of degenerate anisotropic
quasilinear elliptic equations. The left-hand side of (2) will be denoted A 5 and referred to as the p-Laplacian. We note
that when all p, = p, E(f) coincides with a p-energy whose critical points are p-harmonic maps. In the case when all
Do = 2, we have the well-known energy for harmonic maps. These last cases have been considered by several authors
starting from the pioneering works of Eells, Morrey and Sampson; for historical overview and extensive references,
see the monographic masterpiece by Helein [5].

We now introduce some anisotropic Sobolev spaces. We define WI%(M , R (with pe=1, a=1,...,m) as the

space of functions u : M — R¥, u(x) = (u1(x), ..., ur(x)), such that each u; € W})(M);

W},(M):{vew1 (M): eLpa(M) a=1,. }

vl -
W M) = 9x Lo (M)
Let N be isometrically embedded into R¥, then W},(M , N) is the set of functions u € W})(M ,R¥) such that
u(x) € N for almost every x € M.
Under appropriate geometric conditions on M (for instance M satisfies the so called weak [-horn condition ([1],

§8-10) we have the following embedding theorem for anisotropic Sobolev spaces proved for instance in [7].

Theorem 1. Set:

m —1 _
5—122@41% and pr="F_ y5<m. (3)
m m—p
If p <m, then
WE(M) <> Ly (M) )

compactly for each g € (1, max{p*, p;}).

Definition 2. A function f € W}) (M, N) is a weakly p-harmonic map of M into N provided the equations (2) hold in
the sense of distributions.

In this Note we shall be concerned with the compactness properties of solutions of (2) when the target N is a
homogeneous manifold with left-invariant metric. The corresponding problem for p-harmonic maps was established
by Luckhaus [8] and extended to homogeneous target case by Toro and Wang [9]; we refer also to [6] for the evolution
case.

Our approach is inspired from [9] with a strong harmonic analysis flavor centered around some deep results from
Hardy spaces and the analog of a celebrated result by Coifman, Lions, Meyer and Semmes [2] that we derive for
anisotropic Sobolev spaces which are the natural energy spaces for p-harmonic maps. We note that the present work
is the first in which p-harmonic maps are being considered. It seems also to be the first where anisotropic Sobolev
spaces which constitute a very important class of function spaces are being applied to geometric variational problems.

The main result of the Note is the following:

Theorem 3. Let py, > 2, « = 1,...,m. Let M be such that Theorem 1 holds and assume that (N, g) is a compact
homogeneous space with a left invariant metric g. Let {uy}x=12.... be a sequence of weakly p-harmonic maps in
Wl% (M, N) which converges weakly to u in WI% (M, N). Thenu:M — N is a weakly p-harmonic map.
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2. Auxiliary results

Owing to the celebrated Nash embedding theorem, N can be isometrically embedded into some Euclidean
space R¥, in view of the compactness of N. Let i : N — R¥ be the embedding. Then the function F =i o f with values
in R¥ satisfies the orthogonality condition A 5FLTEN, where Aj is the p-Laplacian with respect to M and RX,if f
satisfies (2).

Let X be a Killing vector field on N. That is the generator of an isometry of N, satisfying (D, X (p), v) =0, at all
p €N and forallv e T,N. Here (-,-) stands for the inner product in R restricted to T,N.

Let f satisfy (2). Then by Noether’s Theorem ([4] or [5]), the tangent vector field,

IdafIP“2<X(f) —f>

is divergence free in the distributional sense. In other words for any £ € C°(M),

Z/<a _(X(f)), do 172 f>d —o0. )
Differentiating in (5) and using the Killing property of X, we get:
m
9 -2 0f
Z/ax—a<X(f), da f17 ax—a>dx=°' ©)
a:]M

A result of Helein [4] stipulates that on a homogeneous space N (represented as the quotient N = G/H of a Lie
group G by its closed subgroup H) of dimension n with a left invariant metric, there exist [ smooth tangent vector
fields Y1, ..., Y; and [ Killing fields X1, ..., X; on N such that any vector V € TyN (y € N) admits the expansion
V= Zé:l (X;, V)Y;; 1 is the dimension of the Lie algebra G of G. From this expansion and the divergence freeness
of |dg £1P*~2(:2L. | X;), it follows that

axd 9
m m
9 2 of - 9Y; (f )
Za a<|d f1Pe? ) ZZId 1P 2<— X (f)> : )
a=1i=1

weakly in M. This system of equations is equivalent to (2).

We establish the following generalization of Coifman, Lions, Meyer and Semmes’s result [2] who proved it when
all the py, = p.

Proposition 4. Ler f € Wé (M) and let E = (Ey, ..., Ey) be a vector function such that each component E, €

Ly (M), ((p(/x)_1 + p;l =1, po > 1), a=1,...,m. Suppose that div E = 0 in the weak sense. Then (V f, E) €
H1 10c(M) and for any compact set K C M, there exists a constant C > 0, such that

P Pa
/ } (3)

x|, oy

175 E)lgay <€ [Vl + | 2

here V f is the gradient of f and H1 denotes Hardy’s space.
3. Proof of Theorem 3

Let the sequence { fi}k=1.2,.. € W}, (M, N) satisfy the system of Egs. (7), i.e.,

m

> ’ (ld filPa =2 f") 8k ©)

a=1

weakly, where

Y fl”“‘2< L l(f>>ay(f").

a=1i=1
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We have:
fx— f weakly in WI%(M, N). (10)

Thus { fi} is uniformly bounded in WI% (M, N). Hence each component { f,i } is uniformly bounded in W}, (M). In view
of Theorem 1, it follows that

fi— f' stronglyin Ly (M), withq € (1, max{pq, p*}).

Therefore
fi—f" ae.,inM. (11)
Also (10) implies that
a
|dafk|f’a—2ﬁ — |dy fl”“‘za—fa weakly in L, (M, N). (12)
x o
Arguing as in ([3], pp. 409—-411) modulo some straightforward adaptations, we get that the function
m
_ o2 Uk fk 2 8f A(fk— 1)
ek—Z(maful’ — |do f 17 )T
a=1
converges to zero almost everywhere in M. Thus
a a
i O i, (13)

—
ax“ ax¥
Since X; and Y; are smooth vectors fields, it follows from (11) and (13) that
gk— g ae.inM, (14)
and g € L1(M). Further by Theorem 4, we also have that gx € H1 10oc(M) and for a compact set K C M

A
llgxllr, k) < 5 . (15)
XN L, (M Rm)
All the ingredients are now in place for the proof of the identity,
o 0f ¢
Z/m g2 2 an= [ gpax, 16)

a=1y, M

for any ¢ € W (M, RF) N Loo(M, RF) with support in the compact set K C M. (16) which concludes the proof the
theorem, follows from the relations (10)—(15) together with arguments along the lines of [9].
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