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Abstract

We introduce a new energy functional for maps between two manifolds, the critical points of which (p̃-harmonic maps) are
solutions of a system of anisotropic quasilinear elliptic equations. In the case when the target is a homogeneous manifold with left
invariant metric, we establish a compactness result for the corresponding p̃-harmonic maps. The proof relies on some deep results
from harmonic analysis involving Hardy spaces. To cite this article: M. Sango, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Applications harmoniques anisotropes dans des variétés homogènes : un résultat de compacité. Nous introduisons une
nouvelle fonctionnelle d’énergie pour des applications sur des variétés ; les points critiques de cette fonctionnelle (applications
p̃-harmoniques) sont solutions d’un système d’équations elliptique, quasilinéaire, anisotrope. Dans le cas où la variété cible
est homogène et munie d’une métrique invariante à gauche, nous établissons un résultat de compacité pour les applications
p̃-harmoniques correspondantes. La démonstration utilise un résultat fondamental d’analyse harmonique dans des espaces de
Hardy. Pour citer cet article : M. Sango, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let M be a smooth open set bounded in Rm and N a n-dimensional compact smooth Riemannian manifold with
the metric g = (gij )i,j=1,...,n. Let p̃ = (p1, . . . , pm) ∈ Rm, with pα � 1. For a C1-map f :M → N , we introduce the
anisotropic p̃-energy:

E(f ) =
∫
M

m∑
α=1

1

pα

(
gij

(
f (x)

) ∂f i

∂xα

∂f j

∂xα

)pα/2

dx; (1)

(here and in the sequel we omit the summation symbol over the indices i and j ) the critical points of which satisfy
the corresponding Euler–Lagrange equations,
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m∑
α=1

∂

∂xα

(
|dαf |pα−2 ∂f l

∂xα

)
= −

m∑
α=1

|dαf |pα−2Γ l
ij

∂f i

∂xα

∂f j

∂xα
, (2)

l = 1, . . . , n, Γ l
ij denotes the Christoffel symbols relative to the manifold N . This is a system of degenerate anisotropic

quasilinear elliptic equations. The left-hand side of (2) will be denoted �p̃ and referred to as the p̃-Laplacian. We note
that when all pα = p, E(f ) coincides with a p-energy whose critical points are p-harmonic maps. In the case when all
pα = 2, we have the well-known energy for harmonic maps. These last cases have been considered by several authors
starting from the pioneering works of Eells, Morrey and Sampson; for historical overview and extensive references,
see the monographic masterpiece by Helein [5].

We now introduce some anisotropic Sobolev spaces. We define W 1
p̃
(M,Rk) (with pα � 1, α = 1, . . . ,m) as the

space of functions u :M → Rk , u(x) = (u1(x), . . . , uk(x)), such that each ui ∈ W 1
p̃
(M);

W 1
p̃(M) =

{
v ∈ W 1

1 (M):
∂v

∂xα
∈ Lpα(M), α = 1, . . . ,m

}
,

‖v‖W 1
p̃
(M) = ‖v‖L1(M) +

m∑
α=1

∥∥∥∥ ∂v

∂xα

∥∥∥∥
Lpα (M)

.

Let N be isometrically embedded into Rk , then W 1
p̃
(M,N) is the set of functions u ∈ W 1

p̃
(M,Rk) such that

u(x) ∈ N for almost every x ∈ M .
Under appropriate geometric conditions on M (for instance M satisfies the so called weak l-horn condition ([1],

§8–10) we have the following embedding theorem for anisotropic Sobolev spaces proved for instance in [7].

Theorem 1. Set:

p̄−1 =
∑m

α=1 p−1
α

m
and p∗ = mp̄

m − p̄
if p̄ < m. (3)

If p̄ < m, then

W 1
p̃(M) ↪→ Lq(M) (4)

compactly for each q ∈ (1,max{p∗,pi}).

Definition 2. A function f ∈ W 1
p̃
(M,N) is a weakly p̃-harmonic map of M into N provided the equations (2) hold in

the sense of distributions.

In this Note we shall be concerned with the compactness properties of solutions of (2) when the target N is a
homogeneous manifold with left-invariant metric. The corresponding problem for p-harmonic maps was established
by Luckhaus [8] and extended to homogeneous target case by Toro and Wang [9]; we refer also to [6] for the evolution
case.

Our approach is inspired from [9] with a strong harmonic analysis flavor centered around some deep results from
Hardy spaces and the analog of a celebrated result by Coifman, Lions, Meyer and Semmes [2] that we derive for
anisotropic Sobolev spaces which are the natural energy spaces for p̃-harmonic maps. We note that the present work
is the first in which p̃-harmonic maps are being considered. It seems also to be the first where anisotropic Sobolev
spaces which constitute a very important class of function spaces are being applied to geometric variational problems.

The main result of the Note is the following:

Theorem 3. Let pα � 2, α = 1, . . . ,m. Let M be such that Theorem 1 holds and assume that (N,g) is a compact
homogeneous space with a left invariant metric g. Let {uk}k=1,2,... be a sequence of weakly p̃-harmonic maps in
W 1

p̃
(M,N) which converges weakly to u in W 1

p̃
(M,N). Then u :M → N is a weakly p̃-harmonic map.
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2. Auxiliary results

Owing to the celebrated Nash embedding theorem, N can be isometrically embedded into some Euclidean
space Rk , in view of the compactness of N . Let i :N → Rk be the embedding. Then the function F = i ◦f with values
in Rk satisfies the orthogonality condition �p̃F⊥TF N , where �p̃ is the p̃-Laplacian with respect to M and Rk , if f

satisfies (2).
Let X be a Killing vector field on N . That is the generator of an isometry of N , satisfying 〈DvX(p), v〉 = 0, at all

p ∈ N and for all v ∈ TpN . Here 〈·,·〉 stands for the inner product in Rk restricted to TpN .
Let f satisfy (2). Then by Noether’s Theorem ([4] or [5]), the tangent vector field,

|dαf |pα−2
〈
X(f ),

∂f

∂xα

〉
,

is divergence free in the distributional sense. In other words for any ξ ∈ C∞
o (M),

m∑
α=1

∫
M

〈
∂

∂xα

(
ξX(f )

)
, |dαf |pα−2 ∂f

∂xα

〉
dx = 0. (5)

Differentiating in (5) and using the Killing property of X, we get:
m∑

α=1

∫
M

∂

∂xα

〈
X(f ), |dαf |pα−2 ∂f

∂xα

〉
dx = 0. (6)

A result of Helein [4] stipulates that on a homogeneous space N (represented as the quotient N = G/H of a Lie
group G by its closed subgroup H ) of dimension n with a left invariant metric, there exist l smooth tangent vector
fields Y1, . . . , Yl and l Killing fields X1, . . . ,Xl on N such that any vector V ∈ TyN (y ∈ N ) admits the expansion
V = ∑l

i=1〈Xi,V 〉Yi; l is the dimension of the Lie algebra G of G. From this expansion and the divergence freeness
of |dαf |pα−2〈 ∂f

∂xα ,Xi〉, it follows that

m∑
α=1

∂

∂xα

(
|dαf |pα−2 ∂f

∂xα

)
=

m∑
α=1

l∑
i=1

|dαf |pα−2
〈

∂f

∂xα
,Xi(f )

〉
∂Yi(f )

∂xα
, (7)

weakly in M . This system of equations is equivalent to (2).
We establish the following generalization of Coifman, Lions, Meyer and Semmes’s result [2] who proved it when

all the pα = p.

Proposition 4. Let f ∈ W 1
p̃
(M) and let E = (E1, . . . ,Em) be a vector function such that each component Eα ∈

Lp′
α
(M), ((p′

α)−1 + p−1
α = 1, pα > 1), α = 1, . . . ,m. Suppose that divE = 0 in the weak sense. Then 〈∇f,E〉 ∈

H1,loc(M) and for any compact set K ⊂ M , there exists a constant C > 0, such that

∥∥〈∇f,E〉∥∥H1(K)
� C

m∑
α=1

[
‖Eα‖p′

α

Lp′
α
(M) +

∥∥∥∥ ∂f

∂xα

∥∥∥∥
pα

Lpα (M)

]
, (8)

here ∇f is the gradient of f and H1 denotes Hardy’s space.

3. Proof of Theorem 3

Let the sequence {fk}k=1,2,... ∈ W 1
p̃
(M,N) satisfy the system of Eqs. (7), i.e.,

m∑
α=1

∂

∂xα

(
|dαfk|pα−2 ∂fk

∂xα

)
= gk (9)

weakly, where

gk =:
m∑ l∑

|dαfk|pα−2
〈

∂fk

∂xα
,Xi(fk)

〉
∂Yi(fk)

∂xα
.

α=1 i=1
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We have:

fk ⇀ f weakly in W 1
p̃(M,N). (10)

Thus {fk} is uniformly bounded in W 1
p̃
(M,N). Hence each component {f i

k } is uniformly bounded in W 1
p̃
(M). In view

of Theorem 1, it follows that

f i
k → f i strongly in Lq(M), with q ∈ (

1,max{pα,p∗}).
Therefore

f i
k → f i a.e., in M. (11)

Also (10) implies that

|dαfk|pα−2 ∂fk

∂xα
⇀ |dαf |pα−2 ∂f

∂xα
weakly in Lp′

α
(M,N). (12)

Arguing as in ([3], pp. 409–411) modulo some straightforward adaptations, we get that the function

θk =
m∑

α=1

(
|dαfk|pα−2 ∂fk

∂xα
− |dαf |pα−2 ∂f

∂xα

)
∂(fk − f )

∂xα

converges to zero almost everywhere in M . Thus

∂fk

∂xα
→ ∂f

∂xα
a.e. in M. (13)

Since Xi and Yi are smooth vectors fields, it follows from (11) and (13) that

gk → g a.e. in M, (14)

and g ∈ L1(M). Further by Theorem 4, we also have that gk ∈ H1,loc(M) and for a compact set K ⊂ M

‖gk‖H1(K) � C

m∑
α=1

∥∥∥∥ ∂fk

∂xα

∥∥∥∥
pα

Lpα (M,Rm)

. (15)

All the ingredients are now in place for the proof of the identity,
m∑

α=1

∫
M

|dαf |pα−2 ∂f

∂xα

∂ϕ

∂xα
dx =

∫
M

gϕ dx, (16)

for any ϕ ∈ W 1
p̃
(M,Rk) ∩ L∞(M,Rk) with support in the compact set K ⊂ M . (16) which concludes the proof the

theorem, follows from the relations (10)–(15) together with arguments along the lines of [9].
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