Partial Differential Equations

Is it possible to cancel singularities in a domain with corners and cracks?

Mary Teuw Niane ${ }^{\text {a }}$, Gilbert Bayili ${ }^{\text {a,b }}$, Abdoulaye Sène ${ }^{\text {a,c }}$, Abdou Sène ${ }^{\text {a }}$, Mamadou Sy ${ }^{\text {a }}$
${ }^{\text {a }}$ Laboratoire d'analyse numérique et d'informatique, BP 234, université Gaston-Berger, Saint-Louis, Sénégal
${ }^{\text {b }}$ Laboratoire d'analyse mathématique des équations, université de Ouagadougou, Burkina Faso
c Université Cheikh Anta-Diop, Dakar, Sénégal

Received 30 August 2005; accepted after revision 2 May 2006

Presented by Philippe G. Ciarlet

Abstract

In a domain with corners, we prove that by acting on an arbitrarily small part of the domain or on a small part of the boundary, we obtain a regular solution of the Laplace equation. To cite this article: M.T. Niane et al., C. R. Acad. Sci. Paris, Ser. I 343 (2006).

© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Est-il possible de supprimer des singularités dans un domaine fissuré ? On montre que, dans un domaine à coins, par une action sur une petite partie du domaine ou sur une petite partie de la frontière, on obtient une solution régulière de l'équation de Laplace. Pour citer cet article : M.T. Niane et al., C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Consider Laplace equation with Dirichlet boundary conditions in a domain $\Omega \subset \mathbb{R}^{2}$ with corners. Nonconvex angles of the boundary of Ω produce singularities even if the right-hand side of the equation is smooth (see [1] and [3]). Singularities are rarely desired (like in lightning conductors). So far, there is no way of killing singularities by acting on an arbitrarily small part of the domain. Here we propose a method to do so. The proof is based on a density result, on a bi-orthogonality property of the dual singular solutions and the unicity theorem of Holmgren and Cauchy-Kowalevska (see [2]).

Let $m+1$ be the number of nonconvex angles of the boundary of Ω. Let ϖ be a nonempty domain of Ω (see Fig. 1). We prove that there exist $m+1$ regular functions $\left(g_{i}\right)_{0 \leqslant i \leqslant m}$ with compact support in ϖ such that for any $f \in L^{2}(\Omega)$, if $\left(c_{i}\right)_{0 \leqslant i \leqslant m}$ are the singularity coefficients of problem:

Find $v \in H_{0}^{1}(\Omega)$ such that $\quad-\Delta v=f \quad$ in Ω,

[^0]then, problem
\[

$$
\begin{equation*}
\text { Find } y \in H_{0}^{1}(\Omega) \text { such that } \quad-\Delta y=f-\sum_{i=0}^{m} c_{i} g_{i} \quad \text { in } \Omega, \tag{2}
\end{equation*}
$$

\]

has a unique solution y in $H^{2}(\Omega)$.
We also prove that if Γ_{0} is an arbitrarily small open subset of the boundary Γ of Ω, there exist $m+1$ regular functions $\left(h_{i}\right)_{0 \leqslant i \leqslant m}$ defined on Γ with compact support in Γ_{0} such that problem

$$
\left\{\begin{array}{l}
\text { Find } y \in H^{1}(\Omega) \text { such that } \tag{3}\\
-\Delta y=f \quad \text { in } \Omega, \quad y=\sum_{i=0}^{m} c_{i} h_{i} \quad \text { on } \Gamma,
\end{array}\right.
$$

has a unique solution y in $H^{2}(\Omega)$.

2. Density theorem

Let H be a Hilbert space equipped with an inner product $\langle\cdot, \cdot\rangle_{H}$.
Theorem 2.1 (Density property). Let H be a Hilbert space, D a dense subspace of H and $\left\{e_{0}, \ldots, e_{m}\right\}$ a linearly independent subset of H. Then, there exist $\left\{d_{0}, \ldots, d_{m}\right\}$ in D such that $\forall i, j \in\{0, \ldots, m\},\left(e_{i}, d_{j}\right)_{H}=\delta_{i j}$.

Proof. By Schmidt's orthogonalization, there exist $v_{0}, v_{1}, \ldots, v_{m}$ such that $\left(v_{i}, e_{j}\right)_{H}=\delta_{i j}, \forall i, j=0, \ldots, m$. As D is dense in H, there exist sequences $\left(v_{i}^{(n)}\right.$) of elements in D such that $v_{i}^{(n)} \rightarrow v_{i}$ in H as $n \rightarrow \infty$, for all $i=0, \ldots, m$. This implies that $\left(v_{i}^{(n)}, e_{j}\right)_{H} \rightarrow\left(v_{i}, e_{j}\right)_{H}=\delta_{i j}$ as $n \rightarrow \infty$, and for n large enough, the matrix $B_{n}=\left(\left(v_{i}^{(n)}, e_{j}\right)_{H}\right)_{0 \leqslant i, j \leqslant m}$ is invertible. Fix such a n. Write $B_{n}^{-1}=\left(c_{i j}\right)_{0 \leqslant i, j \leqslant m}$. The requested elements are $d_{i}=\sum_{k=0}^{m} c_{i k} v_{k}^{(n)}$, since $\left(d_{i}, e_{j}\right)_{H}=\sum_{k=0}^{m} c_{i k}\left(v_{k}^{(n)}, e_{j}\right)_{H}=\delta_{i j}$.

3. Bi-orthogonality property of harmonic functions

Theorem 3.1. Let Ω be a nonempty domain of \mathbb{R}^{n}, ϖ a nonempty open subset of Ω. Assume that $\left\{w_{0}, \ldots, w_{m}\right\}$ is a set of linearly independent harmonic functions of $L^{2}(\Omega)$. Then, there exist \mathcal{C}^{∞} functions $\left(g_{i}\right)_{0 \leqslant i \leqslant m}$ with compact support in ω such that: $\forall i, j \in\{0, \ldots, m\}, \int_{\Omega} w_{i} g_{j} \mathrm{~d} x=\delta_{i j}$.

Proof. Let $H=L^{2}(\varpi)$. Let us prove that $\left.w_{0}\right|_{\varpi}, \ldots,\left.w_{m}\right|_{\varpi}$ are linearly independent. Assume that there exist real numbers $\alpha_{0}, \ldots, \alpha_{m}$ such that: $\sum_{i=0}^{m} \alpha_{i} w_{i}=0$ in ω. Since this latter sum is harmonic in Ω then $\sum_{i=0}^{m} \alpha_{i} w_{i}=0$ in Ω. Therefore, $\alpha_{0}=\cdots=\alpha_{m}=0$.

Since $\mathcal{D}(\varpi)$ is dense in $L^{2}(\varpi)$, then by Theorem 2.1, there exist $g_{0}, \ldots, g_{m} \in \mathcal{D}(\Omega)$ with compact support in ϖ such that $\forall i, j \in\{0, \ldots, m\}, \int_{\Omega} w_{i} g_{j} \mathrm{~d} x=\delta_{i j}$.

In the sequel, denote by v the outer unit normal vector to Γ.
Theorem 3.2. Let Ω be a nonempty domain of $\mathbb{R}^{n}, \Gamma_{0}$ be nonempty open and analytic subset of the boundary Γ of Ω. Suppose that $\left\{w_{0}, \ldots, w_{m}\right\}$ is a set of linearly independent harmonic functions of $L^{2}(\Omega)$ such that:

$$
\forall i \in\{0, \ldots, m\},\left.\quad w_{i}\right|_{\Gamma_{0}}=0 \quad \text { on } \Gamma_{0},\left.\quad \frac{\partial w_{i}}{\partial v}\right|_{\Gamma_{0}} \in L^{2}\left(\Gamma_{0}\right) .
$$

Then there exist \mathcal{C}^{∞} functions $\left(h_{i}\right)_{0 \leqslant i \leqslant m}$ with compact supports in Γ_{0} such that:

$$
\forall i, j \in\{0, \ldots, m\}, \quad \int_{\Gamma} \frac{\partial w_{i}}{\partial \nu} h_{j} \mathrm{~d} \sigma=\delta_{i j} .
$$

Proof. The proof is based on the same principle as Theorem 3.1.

Fig. 1. Domain with corners and cracks.

4. Cancellation of singularities

4.1. Preliminary results on dual singular solutions

Denote by $\|$.$\| the Euclidean norm on \mathbb{R}^{2}$. Consider a nonempty polygonal domain Ω of \mathbb{R}^{2}. Let $\left(x_{i}\right)_{0 \leqslant i \leqslant m}$ be vertices of nonconvex angles $\left(\omega_{i}\right)_{0 \leqslant i \leqslant m}$, say ω_{i} is greater than π. Let $\left(\theta_{i}\right)_{0 \leqslant i \leqslant m}$ be the angle defined by vector $x-x_{i}$ and τ (see Fig. 1). Let $i \in\{0, \ldots, m\}$, denote by η_{i} a truncation function in a neighbourhood of the vertex x_{i}, whose support does not meet any other vertex than x_{i}, any other face than those whose intersection is x_{i}, and the support of Γ_{0}. Let w_{i}^{*} be the dual singular solution associated to the corner x_{i}. Thanks to Grisvard [1], we have $w_{i}^{*}=\left\|x-x_{i}\right\|^{-\frac{\pi}{\omega_{i}}} \sin \left(\frac{\pi}{\omega_{i}} \theta_{i}\right) \eta_{i}+\xi_{i}$, where $\xi_{i} \in H_{0}^{1}(\Omega)$. The dual singular solutions satisfy the following equation:

$$
w_{i}^{*} \in L^{2}(\Omega) \backslash H_{0}^{1}(\Omega), \quad-\Delta w_{i}^{*}=0 \quad \text { in } \Omega, \quad w_{i}^{*}=0 \quad \text { on } \Gamma \backslash\left\{x_{i}\right\}
$$

If $f \in L^{2}(\Omega)$, the coefficient of singularity c_{i} at the vertex x_{i}, associated to the solution v of problem
Find $v \in H_{0}^{1}(\Omega)$ such that $\quad-\Delta v=f \quad$ in Ω,
is given by

$$
\begin{equation*}
c_{i}=\int_{\Omega} w_{i}^{*} f \mathrm{~d} x \tag{4}
\end{equation*}
$$

Remark 4.1. The set $\left\{w_{0}^{*}, \ldots, w_{m}^{*}\right\}$ is linearly independent.

4.2. Cancellation of singularities by internal action

Theorem 4.1. There exists $m+1 \mathcal{C}^{\infty}$ functions with compact support in $\varpi, g_{0}, \ldots, g_{m}$ such that if $f \in L^{2}(\Omega)$ and c_{0}, \ldots, c_{m} are defined in (4) then the solution of problem

$$
\begin{equation*}
\text { Find } y \in H_{0}^{1}(\Omega) \text { such that } \quad-\Delta y=f-\sum_{i=0}^{m} c_{i} g_{i} \quad \text { in } \Omega \tag{5}
\end{equation*}
$$

is in $H^{2}(\Omega)$.
Proof. The dual singular solutions w_{i}^{*} verify hypothesis of Theorem 3.1. Therefore, there exists $m+1 \mathcal{C}^{\infty}$ functions with compact support in $\varpi, g_{0}, \ldots, g_{m}$ such that:

$$
\forall i, j \in\{0, \ldots, m\}, \quad \int_{\Omega} w_{i}^{*} g_{j} \mathrm{~d} x=\delta_{i j}
$$

Let c_{0}, \ldots, c_{m} be the coefficients of singularity defined in (4). Then, the solution of problem (5) is in $H^{2}(\Omega)$. In fact the coefficients of singularity $\alpha_{0}, \ldots, \alpha_{m}$ associated to the solution of (5) are given by

$$
\alpha_{i}=\int_{\Omega} w_{i}^{*}\left(f-\sum_{j=0}^{m} c_{j} g_{j}\right) \mathrm{d} x=\int_{\Omega} w_{i}^{*} f \mathrm{~d} x-\sum_{j=0}^{m}\left[c_{j} \int_{\Omega} w_{i}^{*} g_{j} \mathrm{~d} x\right] .
$$

Then, due to Theorem 3.1, it follows $\alpha_{i}=c_{i}-\sum_{j=0}^{m} c_{j} \delta_{i j}=0$, and we conclude that $y \in H^{2}(\Omega)$.

4.3. Cancellation of singularities by acting on Dirichlet conditions

Theorem 4.2. There exists $m+1 \mathcal{C}^{\infty}$ functions with compact support in $\Gamma_{0}, h_{0}, \ldots, h_{m}$ such that if $f \in L^{2}(\Omega)$ and c_{0}, \ldots, c_{m} are defined in (4) then the solution of problem

$$
\begin{equation*}
\text { Find } y \in H^{1}(\Omega) \text { such that } \quad-\Delta y=f \quad \text { in } \Omega, \quad y=\sum_{i=0}^{m} c_{i} h_{i} \quad \text { on } \Gamma \text {, } \tag{6}
\end{equation*}
$$

is in $H^{2}(\Omega)$.
Proof. The dual singular solutions w_{i}^{*} verify hypothesis of Theorem 3.2. Therefore, there exists $m+1 \mathcal{C}^{\infty}$ functions with compact support in $\Gamma_{0}, h_{0}, \ldots, h_{m}$ such that

$$
\forall i, j \in\{0, \ldots, m\}, \quad \int_{\Gamma} \frac{\partial w_{i}^{*}}{\partial \nu} h_{j} \mathrm{~d} \sigma=\delta_{i j}
$$

Let z be an \mathcal{C}^{∞} extension of $\sum_{i=0}^{m} c_{i} h_{i}$ in Ω with support in a neighbourhood of Γ_{0}. Let $v=y-z$ then $v=0$ on Γ and $-\Delta v=f+\Delta z$. Denote by $\beta_{0}, \ldots, \beta_{m}$ the coefficients of singularity associated to v. Then by integrating by parts over Ω, we obtain

$$
\beta_{i}=\int_{\Omega}(f+\Delta z) w_{i}^{*} \mathrm{~d} x=0 .
$$

This allows us to conclude that $v \in H^{2}(\Omega)$, so $y \in H^{2}(\Omega)$.

Acknowledgement

The authors would like to thank the referee for his suggestions to simplify some of the proofs.

References

[1] P. Grisvard, Singularities in Boundary Value Problems, Masson, Springer-Verlag, 1992.
[2] L. Hormander, Linear Partial Differential Operators, Springer-Verlag, 1976.
[3] V.A. Kondratiev, Boundary value problems for elliptic equations in domains with conical or angular points, Transactions Moscow Mat. Soc. (1967) 227-313.

[^0]: E-mail addresses: asene@ugb.sn, asene@sunumail.sn (A. Sène).

