
C. R. Acad. Sci. Paris, Ser. I 343 (2006) 15–18
http://france.elsevier.com/direct/CRASS1/

Algebra

A construction of semisimple tensor categories

Friedrich Knop

Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, USA

Received 4 May 2006; accepted 15 May 2006

Available online 13 June 2006

Presented by Pierre Deligne

Abstract

Let A be an Abelian category such that every object has only finitely many subobjects. From A we construct a semisimple tensor
category T . We show that T interpolates the categories Rep(Aut(p),K) where p runs through certain projective pro-objects of A.
This extends a construction of Deligne for symmetric groups. To cite this article: F. Knop, C. R. Acad. Sci. Paris, Ser. I 343
(2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une construction des catégories tensorielles semi-simples. Soit A une catégorie abélienne dont chaque objet n’a qu’un nombre
fini de sous-objets. A partir de A on construit une catégorie tensorielle semi-simple T . On démontre que T interpole les catégo-
ries Rep(Aut(p),K) où p parcourt certains pro-objets projectifs de A. Ceci étend une construction de Deligne pour les groupes
symétriques. Pour citer cet article : F. Knop, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let K be a field of characteristic zero. In [2], Deligne constructed a tensor category Rep(St ,K) over K depending
on a parameter t ∈ K . If t /∈ N then Rep(St ,K) is Abelian semisimple. Otherwise, it has as quotient the category of
finite-dimensional representations of the symmetric group St .

In this Note, we extend Deligne’s construction. Starting from an Abelian category A such that every object has
only finitely many subobjects we construct a tensor category T = T (A,K) which depends on parameters tϕ , one for
each isomorphism class of simple objects in A. We show that T is semisimple if none of the parameters is singular
(see Definition 3.1). Then the simple objects of T correspond to pairs (x,π) where x is an object of A and π is an
irreducible representation of AutA(x). If all parameters are singular, the category T has as quotient Rep(Aut(p),K)

where p is a projective (pro-)object of A.
The main example is A = Mod(Fq), the category of finite-dimensional Fq -vector spaces. In that case, the simple

objects of T correspond to irreducible representations of GL(m,Fq), m ∈ N. There is only one parameter and this
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parameter is singular if and only it is a power qn. In that case, the category has as a quotient Rep(GL(n,Fq),K). This
proves conjecture [2], p. 3, (A) of Deligne. In unpublished work, Deligne has also proved his conjecture.

2. The construction of T (A,K)

Let A be an essentially small Abelian category such that every object has finite length. Let Â be the set of isomor-
phism classes of simple objects of A. The category we are going to construct will depend on A and on a fixed map
Â → K where K is a field. The image of ϕ ∈ Â in K will be denoted by tϕ . Let κ(A) be the free commutative monoid
generated by Â. It coincides with the Grothendieck monoid of A. Thus, every object x gives rise to an element 〈x〉
of κ(A). In particular, 〈x〉 = 〈y〉 if and only if x and y have the same composition factors.

A correspondence between two objects x and y is a morphism F : c → x ⊕ y. If F is a monomorphism then it is
called a relation. Two correspondences F : c → x ⊕ y and G :d → x ⊕ y are called equivalent if

imF = imG and 〈kerF 〉 = 〈kerG〉. (1)

We define the pseudo-Abelian tensor category T in several steps. First we define the category T0:

Objects: Same as A. The object x of A, regarded as an object of T0, will be denoted by [x].
Morphisms: Equivalence classes of correspondences.
Composition: If G : c → x ⊕ y and F : c → y ⊕ z are correspondences then FG is the equivalence class of c ×y d →

x ⊕ z. It is easy to see that the composition is well defined and associative.

The category T0 becomes a symmetric monoidal category by defining [x] ⊗ [y] := [x ⊕ y]. The unit object is
1 = [0]. Each object is selfdual with δ : 1 → [x] ⊗ [x] and ev : [x] ⊗ [x] → 1 given by the diagonal morphism x →
x ⊕ x.

Let T1(A) be the category with the same objects as T0 but with HomT1(A)([x], [y]) being the free Abelian group
generated by HomT0([x], [y]). The ring EndT1(A)(1) is isomorphic to the polynomial ring Z[Â]. Thus, every Hom-
space is a Z[Â]-module. The fixed map Â → K induces a homomorphism Z[Â] → K . Now we define the category
T1(A,K) as having the same objects as T1(A) but with morphisms

HomT1(A,K)

([x], [y]) = HomT1(A)

([x], [y]) ⊗
Z[Â] K.

Finally, let T = T (A,K) be the pseudo-Abelian completion of T1(A,K), i.e., the category obtained by adjoining
finite direct sums and images of idempotents. The tensor product on T0 induces a symmetric K-bilinear tensor product
on T such that every object has a dual.

3. The semisimplicity of T (A,K) for regular parameters

We call A finitary if every object has only finitely many subobjects. In that case, all Hom-spaces of A are finite
and all Hom-spaces of T (A,K) are finite-dimensional K-vector spaces. For ϕ ∈ Â let mϕ be a simple object in the
isomorphism class ϕ. Then EndA(mϕ) is a finite field. Let qϕ be its order.

Definition 3.1. An element t ∈ K is ϕ-singular if either

(i) t ∈ {1, qϕ, q2
ϕ, . . .} or

(ii) t = 0 and mϕ is part of a non-splitting short exact sequence.

Theorem 3.2. Let A be an essentially small finitary Abelian category. Assume that K is a field of characteristic zero
and that there is no ϕ ∈ Â such that tϕ is ϕ-singular. Then T (A,K) is a semisimple tensor category. The simple objects
correspond to isomorphism classes of pairs (x,π) where x is an object of A and π is an irreducible representation
(over K) of AutA(x).

The proof has two main ingredients.
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Lemma 3.3. The pairing HomT (1,X) × HomT (X,1) → K : (F,G) �→ tr GF is perfect for all X ∈ ObT .

Proof. It suffices to check this for X = [x]. Then the assertion boils down to the non-vanishing of the determinant
Δx := det(〈u∩ v〉K)u,v⊆x . Here 〈u〉K denotes the image of 〈u〉 ∈ κ(A) ⊆ Z[Â] in K . A formula of Lindström [3] and
Wilf [6] implies

Δx =
∏

y⊆x

py with py :=
∑

u⊆y

μ(u, y)〈u〉K. (2)

Here μ(u,y) is the Möbius function of the subobject lattice of x (or y). Let m be a simple subobject of y. Then py

factorizes as py = (tϕ − α)py/m where α is the number of complements of m in y (Stanley [4,5]). Since α is either 0
or a power of qϕ we conclude by induction. �

Now we come to the second main ingredient. Let �(x) denote the length of an object x of A.

Definition 3.4. For a T -morphism F let �(F ) be the least number l such that F factorizes through [x1] ⊕ · · · ⊕ [xs]
with �(xi) � l for all i.

For the next statement, note that x �→ [x], f �→ graph(f ) defines an embedding of A into T .

Lemma 3.5. Let x and y be two objects of A with �(x) = �(y) = l. Then

HomT
([x], [y]) = K

[
IsomA(x, y)

] ⊕ {
F ∈ HomT

([x], [y]) | �(F ) < l
}
. (3)

Proof. For a correspondence F : c → x ⊕ y with components Fx : c → x and Fy : c → y let

coreF := c/(kerFx + kerFy). (4)

Then (3) can be deduced from the following claims:

(i) F factorizes in T0 through [coreF ].
(ii) If F factorizes in T0 through [z] then �(z) � �(coreF).

(iii) F ∈ IsomA(x, y) if and only if �(coreF) = l.

With these two propositions at hand, the proof of Theorem 3.2 proceeds along the same lines as that of [2], Theo-
rem 2.18. �
4. Specialization of T (A,K) at singular parameters

In this section we study the category T when all parameters tϕ are singular but not zero. More precisely assume tϕ =
q

rϕ
ϕ with rϕ ∈ N for all ϕ ∈ Â. Let Ap be the category of all pro-objects of A. This category has enough projectives.

Let

p �
⊕

ϕ∈Â
m

⊕rϕ
ϕ (5)

be a projective cover and put A(p) := AutAp
(p), a profinite group. Let N (Y,X) be the set of all T -morphisms

F :Y → X with tr GF = 0 for all G :X → Y . Then N forms a tensor ideal of T .

Theorem 4.1. There is a functor S :T → Rep(A(p),K) which identifies T /N with Rep(A(p),K).

Proof. For a set S let K[S] be the space of all functions S → K . First we define a functor S :T0 → Rep(A(p),K).
Let x be an object of A and F : c → x ⊕ y a relation. Then we define

S
([x]) := K

[
HomAp

(p, x)
]
, S(F ) :S

([x]) → S
([y]) :α �→

∑

β : p→c

(Fyβ). (6)
α=Fxβ
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Using the projectivity of p one checks that S is a well defined tensor functor. Next, (5) implies that S(x → 0 ⊕ 0) =
〈x〉K ∈ K . This ensures that S extends uniquely to T1 and then to T . That S has the stated property follows along the
same lines as the proof of [2], Theorem 6.2. �
5. Examples and final remarks

As for examples, we already mentioned A = Mod(Fq) in the introduction. We point out three more:

1. Let A be the category of homomorphisms U → V between Fq -vector spaces. Then T interpolates the represen-
tations of the parabolic

(∗ ∗
0 ∗

) ⊆ GL(n1 + n2,Fq) with arbitrary block sizes n1 and n2. The set Â consists of two
elements. The regular parameters are t1, t2 �= 0,1, q, q2, . . . .

2. Let A be the category of pairs (V ,α) where V is an Fq -vector space and α is a nilpotent endomorphism of V .
Then T interpolates Rep(GL(n,Fq [[x]]),K) with regular values t �= 0,1, q, q2, . . . .

3. Let A be the category of all finite Abelian p-groups. Then T interpolates Rep(GL(n, Ẑp),K) with regular values
t �= 0,1,p,p2, . . . .

Remarks.

1. Deligne’s category Rep(St ,K) is obtained by taking for A the opposite of the category of finite sets. Of course,
this category is not Abelian. However, most of the results work more generally in the framework of exact Mal’cev
categories in the sense of [1]. These comprise not only all Abelian categories and the opposite of the category of
sets but also the categories of finite groups, finite rings and many more. In particular, it is possible to interpolate
the representation categories of wreath products Sn  G (for fixed G) or Sn1  Sn2  Sn3 · · · . Details will appear
elsewhere.

2. The basic objects in [2] are slightly different. Let x be an object of A. Then every subobject y of x gives rise
to an idempotent via the relation y ↪→ x ⊕ x. These idempotents commute and induce a decomposition [x] =⊕

y⊆x[y]∗. It is these [y]∗, Deligne is working with. Observe that S([x]∗) is the space of functions on the set of
all epimorphisms p � x. The factorization (2) is an easy consequence of the decomposition.
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