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Abstract

We provide estimates on the volume of tubular neighborhoods around a subvariety Σ of real projective space, intersected with a
disk of radius σ . The bounds are in terms of σ , the dimension of the ambient space, and the degree of equations defining Σ . We
use these bounds to obtain smoothed analysis estimates for some conic condition numbers. To cite this article: P. Bürgisser et al.,
C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Formules générales pour l’analyse régularisée des nombres de conditionnement. Nous donnons des estimations du volume
de l’intersection des voisinages tubulaires autour d’une sous-variété Σ de l’espace projectif réel avec un disque de rayon σ . Les
bornes s’expriment en fonction de σ , de la dimension de l’espace ambiant, et du degré des équations définissant Σ . Nous utilisons
ces bornes pour obtenir des estimations au sens de l’analyse régularisé pour des nombres de conditionnement coniques. Pour citer
cet article : P. Bürgisser et al., C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Dans l’analyse numérique de nombreux problèmes, le nombre de conditionnement C du problème occupe une
position centrale. Le plus souvent C (a) peut être écrit comme (ou borné par) l’inverse relativisée de la distance entre
la donnée a et un ensemble Σ de problèmes mal posés. Cette observation a été utilisée par Demmel [3] pour obtenir
des bornes sur l’espérance mathématique de plusieurs nombres de conditionnement, l’idée essentielle étant de décrire
la probabilité pour que C (a) � 1

ε
au moyen du volume du voisinage tubulaire T (Σ,ε) = {a ∈ Sn | dR(a,Σ) � ε},

dR étant la distance de Riemann sur la sphère Sn. Mais, les résultats de Demmel reposent sur un travail non publié
de A. Ocneanu datant de 1985. Apparemment, ce travail contient une borne supérieure sur le volume autour d’une
variété réelle en termes de degré (cf. Théorème 4.3 de [3]). Le résultat principal de cette Note fournit de telles bornes.
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De plus, nous considérons l’intersection du voisinage tubulaires avec un disque de rayon σ dans l’espace projectif, et
ce paramètre σ apparaît dans l’expression de nos bornes. Plus précisément, nous démontrons le résultat suivant.

Théorème. Soit W une variété algébrique réelle non vide, dans l’espace projectif P
n, définie par un polynôme ho-

mogène de degré d > 0. Alors, pour tout a ∈ P
n et pour tout 0 < σ,ε � 1,

voln(TPn(W, ε) ∩ BPn(a, σ ))

volnBPn(a, σ )
� 4

n−1∑
k=1

(
n

k

)
(2d)k

(
1 + ε

σ

)n−k(
ε

σ

)k

+ nOn

On−1
(2d)n

(
ε

σ

)n

.

Ici, BPn(a, σ ) = {x ∈ P
n | dPn(x, a) < σ } et On denote le volume de la sphère Sn.

Nous utilisons ensuite ce théorème pour obtenir des estimations au sens de l’analyse régularisée pour les nombres
de conditionnement de la résolution des équations linéaires et du calcul de valeurs propres.

1. Introduction

A central feature in the numerical analysis of many computational problems is the condition number C of the
problem. Given an input a, the condition number C (a) measures the extent to which small perturbations of that input
affect the output. Classically, probabilistic analysis of condition numbers assumes a probability distribution on the
set of data, and then takes two forms: bounds on the tail of the distribution of C (a) showing that it is unlikely that
C (a) will be large, and bounds on the expected value of ln(C (a)) estimating the average loss of precision and average
running time. The recently introduced smoothed analysis [9, §3] replaces showing that “it is unlikely that C (a) will
be large” by showing that “for all a and all slight random perturbations �a, it is unlikely that C (a + �a) will be
large”.

The goal of this Note is to give bounds for the smoothed analysis for a large class of condition numbers. Many
times C (a) can be written as (or bounded by) the relativized inverse of the distance from the considered input a to a
set of ill-posed problems Σ . We say that C is a conic condition number in R

n+1 if there exists a semi-algebraic cone
Σ ⊂ R

n+1 (the set of ill-posed inputs) such that, for all points a ∈ R
n+1,

C (a) = ‖a‖
dist(a,Σ)

,

where ‖ ‖ and dist are the norm and distance induced by a specific inner product 〈 , 〉 in R
n+1.

A well-known example of a conic condition number is κF (A) := ‖A‖F ‖A−1‖, where A is a square matrix. The
Condition Number Theorem of Eckart and Young [4] states that κF (A) is conic when Σ is the set of singular matrices.
It is argued in [3] that for many problems the condition number can be bounded by a conic one.

Since Σ is a cone, for all z ∈ R \ {0}, C (a) = C (za). Hence, we may restrict to data a in the real projective space
P

n, in which case the condition number takes the form

C (a) = 1

dPn(a,Σ)
, (1)

where Σ is interpreted now as a subset of P
n and dPn denotes the projective distance (i.e., dPn(x, y) = sindR(x, y),

with dR(x, y) being the angle between x and y). We denote by BPn(a, σ ) the ball of radius σ around a with respect
to the projective distance.

The kind of smoothed analysis we use here, which was introduced in [1], focuses on the following number

sup
a∈Pn

E
z∈BPn (a,σ )

f (z),

where the expected value is taken with respect to the uniform distribution in BPn(a, σ ). Note that when σ = 1 (the
diameter of P

n) the expected value is independent of a and we obtain the average-case analysis.
Our main result is the following:
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Theorem 1.1. Let C be a conic condition number with set of ill-posed inputs Σ ⊆ P
n. Assume Σ is contained in the

projective zero-set Z(f ) of a homogeneous polynomial f ∈ R[X0, . . . ,Xn] of degree d . Then, for all σ ∈ (0,1] and
t � 1, we have

sup
a∈Pn

Prob
z∈BPn (a,σ )

(
C (z) � t

)
� 4

n−1∑
k=1

(
n

k

)
(2d)k

(
1 + 1

tσ

)n−k( 1

tσ

)k

+ nOn

On−1
(2d)n

(
1

tσ

)n

and

sup
a∈Pn

E
z∈BPn (a,σ )

(
lnC (z)

)
� 2 lnn + 2 lnd + 2 ln

1

σ
+ 5.3,

where On := voln(Sn) = 2π
n+1

2

�( n+1
2 )

is the volume of the unit sphere Sn ⊆ R
n+1.

2. Applications

We briefly describe how smoothed analysis estimates follow from Theorem 1.1 for the condition numbers of linear
equation and eigenvalue problems.

2.1. Linear equation solving

The first application of our result is for the classical condition number κF (A) for p × p matrices. In this case, Σ

is the set of singular matrices, which is defined by a single equation namely, det(A) = 0. Therefore, d = p, and we
obtain

sup
A∈Pp2−1

E
M∈B(A,σ)

(
lnκF (M)

)
� 6 lnp + 2 ln

(
1

σ

)
+ 5.3.

2.2. Eigenvalue computations

The sensitivity of the eigenvalues of a matrix A ∈ R
p×p under small perturbations is measured by a condition

number κeigen(A) which, according to Wilkinson [12], is bounded by

κeigen(A) �
√

2‖A‖F

dist(A,Σ)
, (2)

where Σ is the set of matrices having multiple eigenvalues. This set is given by the equation disc(χA) = 0 where
disc(χA) is the discriminant of the characteristic polynomial χA of A, a homogeneous polynomial in the entries of A

of degree p2 − p (see [1, Proposition 3.4]). It follows that

sup
A∈Pp2−1

E
M∈B(A,σ)

(
lnκeigen(M)

)
� 8 lnp + 2 ln

1

σ
+ 6.

3. From probability to the volume of tubular neighborhoods

For a conic condition number C with set of ill-posed inputs Σ , we have

Prob
z∈BPn (a,σ )

{
C (z) � 1

ε

}
= Prob

z∈BPn (a,σ )

{
dPn(z,Σ) � ε

} = voln(TPn(Σ, ε) ∩ BPn(a, σ ))

volnBPn(a, σ )
,

where the ε-neighborhood TPn(Σ, ε) is the set of points having projective distance to Σ less than ε. The first equation
of Theorem 1.1 thus follows from the following statement:

Theorem 3.1. Let W ⊂ P
n be a nonempty real algebraic variety defined by a homogeneous polynomial of degree

d > 0. Let a ∈ P
n and let 0 < σ,ε � 1. Then

voln(TPn(W, ε) ∩ BPn(a, σ ))

volnBPn(a, σ )
� 4
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Bounds on the average case analysis based on a similar geometric result were given by Demmel [3]. His results are
based on unpublished (and apparently unavailable) results by A. Ocneanu on the volume of tubes. One objective of
this Note is to provide one result of this kind.

4. Outline of proof

We briefly outline the main ideas behind the proof of Theorem 3.1. The proof is based on two main ingredients:
a bound on the volume of tubes around submanifolds of the sphere, in terms of integrals of curvature (based on
Weyl’s tube formula [11]), and degree-based bounds on these curvature integrals. We first deal with the case of
smooth hypersurfaces of spheres, and use the angular distance dR . We denote by BSn(a,ϕ) the ϕ-ball around a ∈ Sn

with respect to dR and by TSn(M,α) the α-neighborhood of a submanifold M ⊆ Sn with respect to dR . Note that
volnBPn(a, σ ) = volnBSn(a,ϕ), where σ = sinϕ.

Let M be a compact oriented smooth hypersurface of Sn. The orientation corresponds to the choice of a unit
normal vector field ν on M . Denote by κ1(x), . . . , κn−1(x) the principal curvatures at x ∈ M of the hypersurface M

with respect to the given orientation. For 1 � i � n − 1 we define the ith curvature KM,i(x) of M at x as the ith
elementary symmetric polynomial in κ1(x), . . . , κn−1(x), and we let KM,0(x) := 1. Let U be an open subset of M .
We define the integrals μi(U) and |μi |(U) of the ith curvature and ith absolute curvature over U as

μi(U) :=
∫
U

KM,i dM, |μi |(U) :=
∫
U

|KM,i |dM. (3)

Clearly, |μi(U)| � |μi |(U). Note that μ0(U) = |μ0(U)| = voln−1(U) and |μi |(Sn−1) = 0 for i > 0. Also note that
|μi |(U1) � |μi |(U2) for U1 ⊆ U2, while this is not true for μi .

We define the α-tube T ⊥(U,α) around U by (compare Gray [5, p. 34])

T ⊥(U,α) := {x ∈ Sn; there is a line segment in Sn of length < α from x to U that intersects U orthogonally}.
Clearly, T ⊥(U,α) ⊆ TSn(U,α) and in general the inclusion is strict.

In a seminal article [11], Weyl derived a formula for the volume of α-tubes around a compact submanifold of
Euclidean space or a sphere, provided that α is small enough. Using methods similar to those used in [11] we prove
the following proposition, which gives an upper bound on the volume of tubes around a hypersurface that holds for
any α (compare with Gray [5, Theorem 8.4, (8.6), p. 162]):

Proposition 4.1. Let M be a compact oriented smooth hypersurface of Sn and U be a nonempty open subset of M .
Then, for all 0 < α � π/2,

volnT
⊥(U,α) � 2

n−1∑
i=0

Ji+1(α) |μi |(U)

where Ji+1(α) := ∫ α

0 (sinρ)i(cosρ)n−i−1 dρ.

The next goal is thus to bound the integrals of absolute curvature |μi |(U) when M is a smooth hypersurface defined
as the zero-set of a polynomial of degree d . The keystone of the proof is the following proposition:

Proposition 4.2. Let f ∈ R[X0, . . . ,Xn] be homogeneous of degree d > 0 with a nonempty zero set V ⊂ Sn, and
such that the derivative of f :Sn → R does not vanish on V . Orient V by the unit normal vector field defined by
ν(x) = ‖gradf (x)‖−1 gradf (x) for all x ∈ V . Let a ∈ Sn and 0 < ϕ � π/2. Then, for any 0 � i < n,

|μi |
(
V ∩ BSn(a,ϕ)

)
� 2

(
n − 1

i

)
On−1d

i+1(sinϕ)n−i−1.
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Sketch of proof. The proof is based on two steps. First, we bound |μn−1|(V ) using methods similar to those for
bounding the Betti-Numbers and Euler characteristic of real algebraic sets [7], in particular using Bézout’s theorem.
Ideas in [10, p. 410] have been useful for this purpose. We prove that

|μn−1|(V ) =
∫
V

|KV,n−1|dV � On−1d
n. (4)

Second, we use methods of integral geometry [8] to reduce the problem of bounding the μi(U) to the codimension-one
situation of (4). We briefly describe the key result needed for this purpose.

The orthogonal group G = O(n + 1) operates on Sn in the natural way. We denote by dg the invariant volume
element on the compact Lie group G normalized such that the volume of G equals one. We interpret Si+1 as a
submanifold of Sn for i < n, e.g., given by the equations xi+1 = · · · = xn = 0. Let M be a compact oriented smooth
hypersurface of Sn. For almost all g ∈ G, the integral of the ith (absolute) curvature of M ∩ gSi+1, considered as a
smooth hypersurface of gSi+1, is well defined and this is also the case for U ∩ gSi+1 with U any open subset of M .
The following special case of the principal kinematic formula of integral geometry for spheres [6,8] holds (this was
shown by Chern [2] in Euclidean space):

Lemma 4.3. Let U be an open subset of a compact oriented smooth hypersurface M of Sn. Then, for 0 � i < n − 1,

μi(U) = C(n, i)

∫
G

μi

(
U ∩ gSi+1)dg,

where

C(n, i) = (n − i − 1)

(
n − 1

i

) On−1On

OiOi+1On−i−2
.

In the situation of Proposition 4.2, let U+ be the set of points of U := V ∩ BSn(a,ϕ) where KV,i is > 0 and
similarly define U− where KV,i is < 0. Then |μi |(U) = |μi(U+)| + |μi(U−)|. By (4) and the monotonicity of |μi |,
we have |μi(U+ ∩ gSi+1)| � |μi |(U+ ∩ gSi+1) � |μi |(V ∩ gSi+1) � Oid

i+1. Hence Lemma 4.3 implies that∣∣μi(U+)
∣∣ � C(n, i)Oid

i+1 Prob
g∈G

{
BSn(ga,ϕ) ∩ Si+1 �= ∅}

,

and a similar inequality for U−. The probability on the right-hand side can then be bounded so to yield Proposi-
tion 4.2. �

Combining Propositions 4.1 and 4.2, with U = V ∩ BSn(a,ϕ), and using the estimate Ji(α) � (sinα)i/i for i < n

and Jn(α) � On

2On−1
(sinα)n, we obtain the following bound on the volume of the tube around a patch of a smooth

hypersurface of the sphere:

Proposition 4.4. Let f ∈ R[X0, . . . ,Xn] be homogeneous of degree d > 0 with zero set V = Z(f ) in Sn. Assume that
the derivative of f does not vanish on V . Let a ∈ Sn, and 0 < α,ϕ � π

2 . Then

volnT
⊥(

V ∩ BSn(a,ϕ),α
)
� 4

On−1

n

n−1∑
k=1

(
n

k

)
dk(sinα)k (sinϕ)n−k +Ond

n(sinα)n.

With this proposition at hand, we can prove Theorem 3.1: Set ε := sinα, σ := sinϕ (we work in the setting
of spheres). We have to remove the smoothness assumption in Proposition 4.4 and to estimate the volume of the
α-neighborhood instead of the α-tube.

Assume W = Z(f ) with f homogeneous of degree d . Set g = f 2, so that degg = 2d and Z(f ) = Z(g). Let δ > 0
be smaller than any positive critical value of the function g :Sn → R. Then Dδ := {x ∈ Sn | g(x) � δ} is a compact
domain with smooth boundary

∂Dδ = {
x ∈ Sn | g(x) = δ

}
.
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Indeed, the derivative of g − δ :Sn → R does not vanish on ∂Dδ (use
∑

i xi∂ig(x) = 2d · g(x)). Moreover, note that
W = ⋂

δ>0 Dδ and hence that limδ→0 volnDδ = voln(W) = 0, as dimW < n.
We next claim that TSn(W,α) ⊆ Dδ ∪ TSn(∂Dδ,α) for 0 < α � π/2. To see this, let x ∈ TSn(W,α) \ Dδ and

γ : [0,1] → Sn be a line segment of length less than α such that γ (1) = x and γ (0) ∈ W . Consider the function
G: [0,1] → R, defined by G(t) := g(γ (t)) for t ∈ [0,1]. By assumption, G(1) > δ and G(0) = 0. Hence there exists
τ ∈ (0,1) such that G(τ) = δ. Thus γ (τ) ∈ ∂Dδ and hence dR(x, ∂Dδ) < α, and our claim is established.

We next observe that

TSn(∂Dδ,α) ∩ BSn(a,ϕ) ⊆ T ⊥(
∂Dδ ∩ BSn(a,ϕ + α),α

)
.

Combining this observation with the above claim, we thus obtain

TSn(W,α) ∩ BSn(a,ϕ) ⊆ Dδ ∪ T ⊥(
∂Dδ ∩ BSn(a,ϕ + α),α

)
.

Then we apply Proposition 4.4 to V = ∂Dδ = Z(g − δ‖x‖2d) intersected with the ball BSn(a,ϕ + α). Taking into
account that volnBSn(a,ϕ) � On−1

σn

n
and sin(α + ϕ) � ε + σ , we obtain

volnTSn(W,α) ∩ BSn(a,ϕ)

volnBSn(a,ϕ)
� volnDδ

volnBSn(a,ϕ)
+ volnT ⊥(∂Dδ ∩ BSn(a,ϕ + α),α)

volnBSn(a,ϕ)

� volnDδ

volnBSn(a,ϕ)
+ 4

n−1∑
k=1

(
n

k

)
(2d)k

(
1 + ε

σ

)n−k(
ε

σ

)k

+ nOn

On−1
(2d)n

(
ε

σ

)n

.

Taking the limit as δ → 0 proves the assertion.
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