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Abstract

Let V be an orbit in Zn of a finitely generated subgroup Λ of GLn(Z) whose Zariski closure Zcl(Λ) is suitably large (e.g.
isomorphic to SL2). We develop a Brun combinatorial sieve for estimating the number of points on V for which a fixed set of
integral polynomials take prime or almost prime values. A crucial role is played by the expansion property of the ‘congruence
graphs’ that we associate with V . This expansion property is established when Zcl(Λ) = SL2. To cite this article: J. Bourgain
et al., C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Cribles et expanseurs. Soit V l’orbite dans Zn d’un sous-groupe finiment engendré de GLn(Z) don’t l’adhérence dans la
topologie de Zariski est suffisament grande (p.e. est isomorphe à SL2). Nous developpons une crible combinatoire de Brun a fin
d’estimer le nombre de points de V pour lesquels un system de polynômes donnés prennent des valeurs premières ou presque
premières. Des propriétés d’expansion de certain « graphes de congruence » y jouent un rôle crucial, qu’on établi dans le cas
Zcl(Λ) = SL2. Pour citer cet article : J. Bourgain et al., C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Le probleme general abordé dans cette Note est le suivant. Soit Λ le sous-groupe de GL(n,Z) engendré par
A1, . . . ,Aν et V = Λb l’orbite d’un point b ∈ Zn sous Λ. Soient f1, . . . , ft des polynómes en x ∈ Zn a coefficients
entiers et prennant un nombre infinie de valeurs sur V . On considère des points x ∈ V tel que tout fj (x) soit premier
ou plutôt r-premier (c. á. d. produit d’au plus r nombres premiers). Dénotons Zcl(Λ) l’adhérence de Λ pour la topo-
logie de Zariski et supposons Zcl(Λ) ≡ SL2. Nous demonstrons en particulier que il existe x ∈ V pour lequel chaque
fj (x) est r-premier et |fj (x)| > y. l’Approche combine des variantes des cribles de Brun–Selberg et de nouvaux
resultats sur les expanseurs dans SL2(Z/qZ) qui genéralisant ceux obtenus dans [2] pour q premier.
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1. Statement of results

We denote by Zcl the Zariski closure of subsets in affine k-dimensional space Ak and by P k the set of all
x = (x1, . . . , xk) in Ak such that xj or −xj is prime for each j . Dirichlet’s Theorem on primes in progressions,
as well as the Hardy–Littlewood k-tuple Conjectures [9] can be formulated as the following local-to-global group
theoretic statement:

Conjecture 1. Let Λ be a subgroup of Zk whose projection on each coordinate is not zero. Given b in Zk let V = Λ+b

be the corresponding orbit of Λ. Then

Zcl
(
V ∩ P k

) = Zcl(V )

iff there are no local congruence obstructions (that is, given q > 1, there is x ∈ V such that x1x2 . . . xk ∈ (Z/qZ)∗).

The local obstructions are easily checked and involve only finitely many q . For k = 1 Conjecture 1 is essentially
Dirichlet’s Theorem. For k > 1 one can use the combinatorial sieve [8,11] to show that Conjecture 1 is true if we
replace the primes by r-almost primes (i.e. numbers which are products of at most r primes) where r = r(k). Using
the same techniques one can also give sharp upper bounds (up to a multiplicative factor) for |V ∩ P k ∩ BX|, where
BX is a ball of radius X in Ak , as X goes to infinity. For a non-degenerate rank two subgroup Λ in Z3, Conjecture 1
can be proven using Vinogradov’s methods [24], while very recently Green and Tao [7] proved Conjecture 1 for
non-degenerate rank two subgroups Λ in Z4.

The above formulation of Conjecture 1 suggests various non-Abelian versions, of which the simplest is the follow-
ing:

Conjecture 2. Let Λ be a non-elementary subgroup of SL2(Z) (equivalently, Zcl(Λ) = SL2), b a primitive point in
Z2 and V = Λb the corresponding orbit. Then

Zcl
(
V ∩ P 2) = Zcl(V )

(= A2)

iff there are no local congruence obstructions.

The non-elementary condition is necessary. We must clearly avoid finite subgroups but also Conjecture 2 is false
for cyclic subgroups. For example, if Λ is generated by

( 7 6
8 7

)
and b = [ 1

1

]
, then there are no local obstructions, but

V is contained in {(x, y): 4x2 − 3y2 = 1}, from which it is clear that y cannot be prime and hence V ∩ P 2 is empty.
The formulation of the higher dimensional versions of Conjecture 2, as well as the generalization to this non-Abelian
setting of Schinzel’s hypothesis H [20] is more involved and we leave it to the long version of this paper [3]. Our aim
here is to outline the key ingredients needed to develop a combinatorial sieve in this non-Abelian context and to apply
it to establish versions of these conjectures with primes replaced by almost primes.

Theorem 1. Let Λ be a subgroup of GL(n,Z) whose Zariski closure is SL2. Fix f1, f2, . . . , ft in Z[x1, . . . , xn],
b ∈ Zn and let V = Λb. There is an r , depending on Λ, b and the f ’s, such that the set

Vf,r = {
x ∈ V : fj (x) is an r-almost prime for each j

}

is Zariski dense in Zcl(V ).

Applying Theorem 1 to the case that Λ is a non-elementary subgroup of SL2(Z) and fj (x) = xj , j = 1,2, yields
an almost prime version of Conjecture 2. The proof of Theorem 1 yields an effective, though very poor, dependence
for r on V and the f ’s. In order to get a better and explicit dependence, or to estimate from above the number of x’s
for which the fj (x) are prime, it is best to use an Archimedean norm to order the elements of V . For this analysis we
suppose that Λ is a subgroup of SL2(Z) and that the action is the standard one on the two by two integer matrices
by multiplication on the left, and we consider the orbit V of I (the identity matrix) under Λ. Denote by |x| the norm
(
∑

i,j x2
ij )

1/2, where x = ( x11 x12
x21 x22

)
. Set NΛ(y) = |{x ∈ Λ: |x| � y}| and let δ(Λ) be the Hausdorff dimension of the

limit set of an orbit Λz ⊂ H ∪ {∞} ∪ R, where H is the hyperbolic plane, z ∈ H and Λ acts by linear fractional
transformations. If δ(Λ) > 1 then it is known [12] that NΛ(y) ∼ cΛy2δ(Λ), as y → ∞. Let f1, f2, . . . , ft be integral
2
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polynomials in x1, x2, x3, x4, which when reduced in coordinate ring �Q[x1, x2, x3, x4]/〈x1x4 − x2x3 − 1〉 generate
distinct prime ideals. This is an independence condition on the f ’s when restricted to Zcl(V ). Set

πΛ,f (y) = ∣∣{x ∈ Λ; |x| � y,fj (x) is prime for j = 1, . . . , t
}∣∣.

Theorem 2. Let Λ be a finitely-generated subgroup of SL(2,Z) with δ(Λ) > 1
2 and assume that f1, . . . , ft satisfy the

above independence condition. Then

lim
y→∞

πΛ,f1,...,ft (y)(logy)t

NΛ(y)
< ∞.

If there is a local congruential obstruction to the fj (x) being prime on V , then the above lim is zero. If not, then a
quantitative version (for the Archimedean ordering) of the non-Abelian Schinzel Conjecture [3] asserts that the above
limit exists and is not zero. So the upper bound in Theorem 2 is expected to be sharp except for the multiplicative
constant.

The proofs of Theorems 1 and 2 rely on certain families of graphs being expanders (see [17] for a definition). In the
more general setting of Λ being a group generated by invertible integer coefficient polynomial maps A1,A2, . . . ,Aν

of Zn and an orbit V = Λb of b in Zn under Λ, we define the associated ‘congruence graphs’ as follows: For q � 1
let V (q) be the subset of (Z/qZ)n that results from reducing V modulo q . We make this into a 2ν regular graph
G(V (q);A±1

1 , . . . ,A±1
ν ) by taking the vertices of the graph to be V (q) and joining x to y with the number of edges

equal to the number of B’s in {A±1
1 , . . . ,A±1

ν } such that Bx = y.

Theorem 3. Let Λ = 〈A1, . . . ,Aν〉 ⊂ GL(n,Z), V = Λξ and assume that Zcl(Λ) ∼= SL2. Then for q � 1 the graphs
G(V (q);A±1

1 , . . . ,A±1
ν ) form an expander family.

This extends the recent results [2] to this setting and also from q prime to q square-free (thus also providing
affirmative answer to Lubotzky’s 1–2–3 problem [13] for q square-free). The proof of Theorem 3 builds crucially on
the following sum–product estimate, which extends results in [5,4].

Theorem 4. Let δ1 � δ2 > 0. Let q = ∏J
j=1 pj be a product of distinct primes. For q ′|q , let πq ′ denote the projection

Z/qZ → Z/q ′Z. Let A ⊂ Z/qZ and assume that

qδ1 < |A| < q1−δ1

and
∣∣πq1(A)

∣∣ > q
δ2
1 for all q1|q with q1 > qδ1/3.

Then

|A + A| + |A · A| > qδ3 |A|
where δ3 = δ3(δ1, δ2) > 0.

For the sieving which uses Archimedean norm (rather than word-length norm used to prove Theorem 1) we need a
continuous (non-Euclidean) analogue of Theorem 3 in the form of the appropriate spectral gap result. Here we assume
that Λ is a finitely generated subgroup of SL(2,Z) and δ(Λ) > 1

2 . Let XΛ = Λ\H be the corresponding hyperbolic
surface (which is of infinite volume if Λ is of infinite index in SL(2,Z)). The spectrum of the Laplace–Beltrami
operator on L2(XΛ) consists of finite number of points in [0, 1

4 ) (see [12]). We denote them by

0 � λ0(Λ) < λ1(Λ) � · · · � λmax(Λ) <
1

4
.

The assumption that δ(Λ) > 1 is equivalent to λ0(Λ) < 1 and in this case δ(1 − δ) = λ0 [16].
2 4
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Theorem 5. Let Λ be a finitely generated subgroup of SL(2,Z) with δ(Λ) > 1
2 . For q � 1 let Λ(q) be the ‘congruence’

subgroup {x ∈ Λ: x ≡ I mod q}. There is ε = ε(Λ) > 0 such that

λ1
(
Λ(q)

)
� λ0

(
Λ(q)

) + ε,

for all square-free q � 1 (note that λ0(Λ(q)) = λ0(Λ)).

This gives an infinite volume extension of Selberg’s well-known bound for modular surfaces [22]. In [6] an ex-
plicit and stronger version of Theorem 5 is proven under the assumption that δ(Λ) > 5

6 . See [18] for the sharpest
known bounds towards Selberg’s 1

4 Conjecture as well as bounds towards the Ramanujan Conjectures for more gen-
eral groups. These have direct application to the problem at hand in the special but interesting case (which we call
the algebraic case as opposed to the general combinatorial ‘thin orbit’ case of this note) that the subgroup Λ is an
arithmetic lattice in a semi-simple group G defined over Q, see [15].

We expect that Theorem 1 holds under the general assumption that Zcl(Λ) is semi-simple, connected and simply
connected. The only part of the proof that needs to be further developed in order to handle this general case is the
combinatorics used to prove Theorem 3 (in particular, extending [10] and [2]).

2. Brief outline of proofs

We begin with Theorem 1. First, using an appropriate adaptation of the argument in [23], we pass to a free subgroup
F of Λ, generated by two elements A and B , which is Zariski-dense in Zcl(Λ), and for which StabF (ξ) = {1}. We
order the elements x of F by word length w(x) in the generators A and B . For R � 1 an integer, let

NF (R) = ∣∣{x ∈ F : w(x) � R
}∣∣ = 4 · 3R−1.

By an elementary analysis of the subgroups of SL2(Z/qZ), or, in greater generality by invoking the strong approxima-
tion theorem in [14], there is q1 = q1(Λ) such that the injection of F into

∏
(p,q1)=1 SL2(Zp) is dense. In particular,

the projection F ↪→ SL2(Z/qZ) is onto if (q, q1) = 1. Using the expander property (Theorem 3) one shows that for
any nonconstant f in Z[x1, x2, x3, x4]/〈x1x4 − x2x3 − 1〉 we have

∣∣{x ∈ F | w(x) � R,f (x) = 0
}∣∣ = O

(
NF (R)γ

)
(1)

for a fixed γ < 1. For n � 1 set

an(R) = ∣∣{x ∈ F |w(x) � R,
∣∣f1 . . . ft (x)

∣∣ = n
}∣∣.

Again using the expander property it follows that for d � 1 square-free and (d, q1) = 1
∑

n≡0(d)

an(R) = β(d)

|SL2(Z/dZ)|NF (R) + O
(
NF (R)γ

)
, (2)

where

β(d) = ∣∣{x ∈ SL2(Z/dZ): f1(x) . . . ft (x) ≡ 0(mod d)
}∣∣.

This allows us to carry out a (lower bound) combinatorial Brun sieve [11] to conclude that in the case that f1, . . . , ft

are irreducible and independent we have the following lower bound for the sum over n sieved for primes up to P :

S(R,P ) =
∑

(n,P )=1

an(R) � NF (R)

(log z)t
,

where P = ∏
p�z, (p,q1)=1 p and z = CR for some C > 1, C depending only on F = 〈A,B〉 and f1, . . . , ft . Theorem 1

then follows on noting that an(R) = 0 for n � CR
1 , where C1 is large constant depending on A and B only, and using

(1) to ensure Zariski density.
It is interesting to note the sharp contrast to the more familiar case where V is linear and for which the analogue

of (2) with a very small remainder follows from Poisson summation (and no spectral gap property is needed). In the
present case (2) (and its Archimedean analogue discussed below) is essentially equivalent to the expander property
and the remainder is never small (γ � 1 ). In this sense the counting of integral points in progressions on non-Abelian
2
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orbits or on nonlinear varieties is similar to counting primes in progressions on the line, where again a square root
remainder is the best that one can expect.

Theorem 2 is proved in a similar way except that the counting is done with

ãn(R) =
∑

x∈L: |x|<R
|f1(x)...ft (x)|=n

1,

or a smoothed weighted version of this sum which for technical purposes is better. One can evaluate
∑

n≡0(d) ãn(R)

to the same degree of precision as in (2) above by using [12] and the spectral gap result in Theorem 5. In place of
lower bound combinatorial sieve we use an upper bound one, or better still the simpler Selberg’s Λ2 sieve [21].

The proof of Theorem 3 is based on exploiting the large symmetry group of the graphs to ensure high multiplicity
of eigenvalues, together with an upper bound on the number of closed cycles (an approach initiated in [19] and sub-
sequently applied in [6] and [2]), the new feature being that q is square-free (and prime to q1). As for the multiplicity
bounds that are needed in the proof, we proceed inductively on the number of prime factors of q . The proof of the
upper bound follows the approach in [2] and builds crucially on the sum–product estimate in Zq for q square-free
(Theorem 4), which we prove using analytic tools for general moduli developed in [1]. Armed with Theorem 4, and
following the approach in [10] we derive a product theorem in SL2(Z/qZ); proceeding as in [2] we then give suitable
convolution estimates in SL2(Z/qZ) and eventually obtain the required upper bound.

Theorem 5 is deduced from Theorem 3 by a geometrical argument involving renormalization by the (positive)
ground-state of Laplacian on Λ\H of the various vector-valued test functions on H, which transform under Λ by
representations factoring through Λ/Λ(q).

Complete proofs as well as concrete examples and applications of the theorems above will appear in [3].
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