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Ordinary Differential Equations

When is a non-self-adjoint Hill operator a spectral operator
of scalar type? ✩
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Abstract

We derive necessary and sufficient conditions for a one-dimensional periodic Schrödinger (i.e., Hill) operator H = −d2/dx2 +V

in L2(R) to be a spectral operator of scalar type. The conditions demonstrate the remarkable fact that the property of a Hill operator
being a spectral operator is independent of smoothness (or even analyticity) properties of the potential V . To cite this article:
F. Gesztesy, V. Tkachenko, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Quand un opérateur de Hill non-autoadjoint est-il un operateur spectral de type scalaire ? Nous dérivons des conditions
nécessaires et suffisantes pour qur l’opérateur de Schrödinger (i.e., l’opérateur de Hill) H = −d2/dx2 + V dans L2(R) soit un
opérateur spectral de type scalaire. Les conditions montrent que cette propriétés ne dépend pas des propriétés différentielles (ou
analytiques) du potentiel V . Pour citer cet article : F. Gesztesy, V. Tkachenko, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

We consider (maximally defined) Hill operators H = −d2/dx2 + V , x ∈ R, in L2(R) with complex-valued
π -periodic potentials V such that V ∈ L2([0,π]).

Then two fundamental problems, central to the spectral theory of such operators, are the following:
(I) What is the spectrum, σ(H), of H , in particular, what is the nature and geometry of σ(H)?
(II) What kind of spectral decomposition (or resolution of the identity), if any, is generated by H in the space

L2(R)?
Both problems are completely solved for the case of real-valued potentials, that is, for self-adjoint Hill operators.

As to the first problem, the Floquet–Bloch theory states that for every such operator there exists a sequence of real
numbers λ+

0 < λ−
1 � λ+

1 < · · · < λ−
k � λ+

k < · · · such that the spectrum of H is purely absolutely continuous and has
the form

✩ Based upon work supported by the US National Science Foundation under Grant No. DMS-0405526 and the Research Council and the Office
of Research of the University of Missouri–Columbia.

E-mail addresses: fritz@math.missouri.edu (F. Gesztesy), tkachenk@cs.bgu.ac.il (V. Tkachenko).
URL: http://www.math.missouri.edu/personnel/faculty/gesztesyf.html (F. Gesztesy).
1631-073X/$ – see front matter © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2006.06.014



240 F. Gesztesy, V. Tkachenko / C. R. Acad. Sci. Paris, Ser. I 343 (2006) 239–242
σ(H) =
∞⋃

k=0

[
λ+

k , λ−
k+1

]
. (1)

A solution of the second problem for self-adjoint Hill operators was provided by Titchmarsh [10] around 1950.
He obtained an explicit formula for the resolution of the identity generated by H in terms of the fundamental matrix
U(z, x) = ( θ(z,x) φ(z,x)

θ ′(z,x) φ′(z,x)

)
, U(z,0) = I2, z ∈ C, of solutions of the differential equation

−y′′(z, x) + V (x)y(z, x) = zy(z, x), (2)

where prime ′ denotes the derivative with respect to x ∈ R.
According to Titchmarsh [10], for every element f ∈ L2(R), the orthogonal L2-representation

f (x) =
∞∑

k=0

(−1)k

2π

λ−
k+1∫

λ+
k

dλ√
1 − Δ+(λ)2

Φ(λ,x;f ) (3)

holds with

Φ(λ,x;f ) = φ(λ,π)θ(λ, x)F1(λ) − θ ′(λ,π)φ(λ, x)F2(λ)

− Δ−(λ)θ(λ, x)F2(λ) − Δ−(λ)φ(λ, x)F1(λ), λ ∈ σ(H), (4)

where Δ±(z) = [θ(z,π) ± φ′(z,π)]/2, z ∈ C,
√

1 − Δ+(λ)2 � 0, and F1(λ) = ∫
R

dy f (y)θ(λ, y), F2(λ) =∫
R

dy f (y)φ(λ, y), λ ∈ σ(H). As a corollary, for every closed Borel set σ ⊂ σ(H) the operator P(σ) defined by

(
P(σ)f

)
(x) = 1

2π

∫
σ

dλ√
1 − Δ+(λ)2

Φ(λ,x;f ) (5)

is an orthogonal projection of L2(R) onto the closed subspace ran(P (σ )) invariant with respect to H , such that the
spectrum of its restriction to ran(P (σ )) is contained in �σ .

While the case of self-adjoint Hill operators is under complete control, the case of non-self-adjoint Hill operators
offers a remarkable complexity. The first result in this context obtained by Serov [9] reads:

The spectrum of a Hill operator with a complex-valued potential q ∈ L2([0,π]) coincides with the set σ(H) =
{λ ∈ C | Δ+(λ) ∈ [−1,1]}. According to this result the spectrum σ(H) of H is formed by a system of analytic arcs
in the complex plane that may intersect in inner points as shown in [7] (see also [4]). For necessary and sufficient
conditions on a set Σ ⊂ C to be the spectrum of some periodic Schrödinger operator H with periodic potential
q ∈ L2

loc(R) in terms of a certain class of Riemann surfaces, we refer to [12].
While the spectrum of non-self-adjoint Hill operators has been understood since 1960, much less was known about

the spectral decompositions generated by such non-self-adjoint operators. At first this appears to be unusual since
all ingredients of the Titchmarsh formula (3) are also present in the non-self-adjoint situation and hence it would
seem natural to use them for a corresponding spectral analysis of the non-self-adjoint case. Such attempts, however,
immediately meet essential obstacles.

According to general principles of spectral analysis, to adjust the formula (3) to the non-self-adjoint case one re-
places the intervals [λ+

k , λ−
k+1] by the spectral arcs comprising σ(H) and instantly meets the first difficulty at the

points of intersection of such arcs. If λ0 is such a point and • denotes the derivative with respect to z, then a change
of variables from λ ∈ [λ+

k , λ−
k+1] (now denoting a spectral arc) to t ∈ [0,2π], using Δ+(λ) = cos(t), leads to inte-

grals of the type
∫
T

dt (Δ•+(λ(t)))−1Φ(λ(t), x;f ), where T ⊆ [0,2π] is an interval containing t0. Convergence of
these integrals for arbitrary f ∈ L2([0,π]) and their operator properties depend on the behavior of the meromorphic
functions

φ(z,π)

Δ•+(z)
,

θ ′(z,π)

Δ•+(z)
,

Δ−(z,π)

Δ•+(z)
(6)

participating in (4).
Clearly, Hill operators H commute with the operator of translation by π . McGarvey [5] initiated the study of

general operators of such a type within the framework of the theory of spectral operators in the sense of Dunford [1].
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A closed operator T with domain dom(T ) ⊆ H, H a complex, separable Hilbert space, is called a spectral operator
if there exists a countably additive projection-valued measure ET (·) defined on the Borel subsets B of C such that:

1. ET (Λ1)ET (Λ2) = ET (Λ1 ∩ Λ2), ET (∅) = 0, ET (σ(T )) = IH; ‖ET (Λ)‖ � C with C independent of Λ ∈ B;
2. ET (Λ)dom(T ) ⊆ dom(T ), T ET (Λ)f = ET (Λ)Tf , f ∈ dom(T ), Λ ∈ B;
3. ET (Λ)H ⊆ dom(T ) for Λ bounded, σ(T |ET (Λ)H∩dom(T )) ⊆ Λ.
A spectral operator T is a spectral operator of scalar type if

dom(T ) =
{
g ∈ H

∣∣∣∣ l.i.m.
n↑∞

∫
{λ∈C||λ|�n}

λd
(
ET (λ)g

)
exists in H

}
,

Tf = l.i.m.
n↑∞

∫
{λ∈C||λ|�n}

λd
(
ET (λ)f

)
, f ∈ dom(T ).

McGarvey was able to apply his results only to operators of the form −d2/dx2 + p(x)d/dx + q(x), x ∈ R, with
π -periodic functions p and q under the restriction Im(

∫ π

0 dx p(x)) �= 0. The spectra of such operators outside a
sufficiently large disc are composed of some separated ovals, permitting McGarvey to prove that these operators
are in some sense asymptotically spectral operators ([5], Part II). Such results ignore the existence of local spectral
singularities and, at any rate, are not applicable to Hill operators H .

Meiman [6] noted that zeros of Δ•+(λ) are integrable singularities for the functions (6) with Δ+(z) = cos(t), but
this is generally incorrect for t ∈ {0,π,2π}.

Finally, we mention that Veliev [13] erroneously concluded that the spectra of Hill operators always have non-
intersecting analytic arcs which invalidates some his results concerning spectral singularities and spectral expansions.

Given this incomplete and, in part, quite confusing state of affairs on the question of whether or not a Hill operator
is a spectral operator of scalar type, after more than 40 years since the problem first arose, we present its solution in
terms of certain functions related to Eq. (2). For detailed proofs of Theorems 1–3 we refer to [3].

Theorem 1. A Hill operator H is a spectral operator of scalar type if and only if the estimates∣∣∣∣φ(λ,π)

Δ•+(λ)

∣∣∣∣ � C,

∣∣∣∣ θ ′(λ,π)

(|λ| + 1)Δ•+(λ)

∣∣∣∣ � C,

∣∣∣∣ Δ−(λ)

(
√|λ| + 1)Δ•+(λ)

∣∣∣∣ � C (7)

hold for all λ ∈ σ(H), with C a finite positive constant independent of λ ∈ σ(H). If the conditions (7) are satisfied,
then the functions (6) are analytic for z in an open neighborhood of σ(H).

Some disadvantage of the above conditions lies in the fact that the numerators of the fractions in (7) are not
independent functions. To remedy this, we mention that Sansuc and Tkachenko [8] gave a parametrization of Hill
operators using the functional parameters {φ(z,π),Δ+(z),Δ−(z)}z∈C. The following criterion is stated in terms of
these parameters:

Theorem 2. A Hill operator H is a spectral operator of scalar type if and only if the following conditions (i) and (ii)
are satisfied:

(i) The function

Δ+(z)2 − 1 − Δ−(z)2

φ(z,π)Δ•+(z)
(8)

is analytic for z in an open neighborhood of σ(H).
(ii) The inequalities∣∣∣∣φ(λ,π)

Δ•+(λ)

∣∣∣∣ � C,

∣∣∣∣ Δ−(λ)

(
√|λ| + 1)Δ•+(λ)

∣∣∣∣ � C, λ ∈ σ(H), (9)

are satisfied with C a finite positive constant independent of λ ∈ σ(H).

If both conditions (8) and (9) are satisfied, and a point λ0 ∈ σ(H) satisfies Δ•+(λ0) = 0, then Δ+(λ0)
2 − 1 =

Δ−(λ0) = Δ•+(λ0) = 0, Δ••+ (λ0) �= 0, implying that the spectrum of a Hill operator, which is a spectral operator of
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scalar type, is formed by a system of countably many, non-intersecting, analytic arcs. The latter may degenerate into
finitely many simple analytic arcs and a simple analytic semi-infinite arc, all of which are non-intersecting. Both
conditions in (9) are independent; neither one of them implies the other. Moreover, analyticity of the function (8) does
not follow from the estimates (9).

To prove Theorems 1 and 2 we use, similar to the paper by Tkachenko [11], the method of direct integral de-
compositions following Gel’fand [2], connecting the Hill operator H with the family of densely defined, closed,
linear operators H(t), t ∈ [0,2π] in L2([0,π]) defined by the differential expression −d2/dx2 + q(x) restricted to
x ∈ [0,π] and the t-dependent boundary conditions y(π) = eit y(0), y′(π) = eit y′(0). The spectrum of the operator
H(t), t ∈ [0,2π], is given by σ(H(t)) = {Ek(t)}k∈N0 = {z ∈ C | Δ+(z) = cos(t)}, and the spectrum of H is then
given by σ(H) = ⋃

0�t�π σ (H(t)). For obvious reasons, the spectrum {Ek(0)}k∈N0 of H(0) and {Ek(π)}k∈N0 of
H(π) is called the periodic and anti-periodic spectrum of H , respectively.

The following criterion involves the spectrum σ(H), the periodic and the anti-periodic spectra {λ+
0 , λ±

k }k∈N =
{Ek(0),Ek(π)}k∈N0 of H , the Dirichlet spectrum {μk}k∈N, the set of critical points {δk}k∈N of Δ+, and is connected
with the algebraic and geometric multiplicities of the eigenvalues in the sets σ(H(t)), t ∈ [0,π].

Theorem 3. A Hill operator H is a spectral operator of scalar type if and only if the following conditions (i)–(iii) are
satisfied:

(i) Every multiple point of either the periodic or anti-periodic spectrum of H is a point of its Dirichlet spectrum.
(ii) For all t ∈ [0,2π] and all Ek(t) ∈ σ(H(t)), each root function (i.e., element of the algebraic eigenspace)

of the operator H(t) associated with Ek(t) is an eigenfunction of H(t). In particular, the geometric and algebraic
multiplicity of each eigenvalue Ek(t) of H(t) coincide.

(iii) Let Q= {k ∈ N | dist(δk, σ (H)) �= 0}, then

sup
k∈Q

|λ+
k − λ−

k |
dist(δk, σ (H))

< ∞, sup
k∈Q

|δk − λ±
k |

dist(δk, σ (H))
< ∞. (10)

Our Theorems 1–3 give three equivalent criteria for the eigenfunction system of the operators H(t) to be a Riesz
basis uniformly with respect to t ∈ [0,2π]. The latter is equivalent for the operator H to be a spectral operator of
scalar type.
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