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Abstract

We generalize the work of M. Singer (1978) on the theory of closed ordered differential fields to the case of m-ODF, the theory
of ordered fields equipped with m commuting derivations. We give an algebraic axiomatization of the model completion (denoted
by m-CODF) of this theory and we can immediately deduce that m-CODF has quantifier elimination in the natural language of
ordered Δ-rings. To cite this article: C. Rivière, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

La théorie des corps ordonnés différentiellement clos munis de m dérivations commutant entre elles. Nous généralisons
les travaux de M. Singer concernant la théorie des corps ordonnés différentiellement clos au cas des corps ordonnés munis de
m dérivations commutant entre elles. Nous donnons une axiomatisation algébrique de la modèle-complétion de cette théorie et
nous pouvons directement déduire que cette dernière admet l’élimination des quantificateurs dans le langage naturel des anneaux
ordonnés différentiels. Pour citer cet article : C. Rivière, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Basic differential algebra

A Δ-ring (resp. Δ-field) is a ring (resp. field) M equipped with a set Δ = {δ1, . . . , δm} of m commuting derivations
(e.g. the field R(X,Y ) of rationals functions over R equipped with the usual partial derivations w.r.t. X and Y is a
differential field).

Let a ∈ M where M is a Δ-field of characteristic zero, we use the notation δ1
(e1) · · · δm

(em)a to denote the element
δ1 · · · δ1︸ ︷︷ ︸
e1 times

· · · δm · · · δm︸ ︷︷ ︸
em times

a of M .

An ideal I of M is a Δ-ideal if it is closed under the action of Δ. For any subset S of M , we write (S) for the ideal
generated by S in M and [S] for the Δ-ideal generated by S in M .
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Let Θ be the set of derivative operators {δ1
(e1) · · · δm

(em) | e1, . . . , em � 0} then M{y} is the polynomial ring gen-
erated by the θy’s and is called the ring of Δ-polynomials in 1 indeterminate over M . Remark that the derivations
δ1, . . . , δm extend naturally to M{y} by putting

δi(θy) = δ1
(e1) · · · δi−1

(ei−1)δi
(ei+1)δi+1

(ei+1) · · · δm
(em)y if θ = δ1

(e1) · · · δm
(em).

We define a ranking on Θ by setting δ1
(e1) · · · δm

(em) < δ1
(e′

1) · · · δm
(e′

m) iff (e, em, . . . , e1) < (e′, e′
m, . . . , e′

1) in the
lexicographical ordering (where e := ∑m

i=1 ei and e′ := ∑m
i=1 e′

i are called the order of respectively δ1
(e1) · · · δm

(em)

and δ1
(e′

1) · · · δm
(e′

m)). We will denote by θh−1 the h-th element of Θ w.r.t. this ranking. Remark that the order type of
this ranking is ω and that if θ1 < θ2 and θ are in Θ then θθ1 < θθ2.

Let f be in M{y}, the maximal h such that θhy appears non trivially in f is called the height of f and is denoted
by hf . Furthermore, the order of f (denoted by ord(f )) is equal to the order of θhf

(remark that this definition only
holds in the case of Δ-polynomials in one single indeterminate, see [1]) and the leader of f (denoted by vf ) is θhf

y.
We associate two Δ-polynomials to f : the separant of f (denoted by Sf (y)) is the partial derivative of f with

respect to vf and the initial of f (denoted by If (y)) is the leading coefficient of f considered as an ordinary polyno-
mial in the variable vf . We also define the rank of a Δ-polynomial f to be the lexicographically ordered pair (hf , df )

where df is the degree of f considered as a polynomial in vf .

Definition 1.1. Let f1, f2 ∈ M{y}, we say that f1 is partially reduced w.r.t. f2 if no proper derivative of vf2 appears
(non trivially) in f1. If furthermore degvf2

(f1) < degvf2
(f2) (where we consider f1, f2 as ordinary polynomials in vf2 )

then we say that f1 is reduced w.r.t. f2.
A subset F = {f1, . . . , fs} of M{y} is autoreduced if, for any i �= j , fi is reduced w.r.t. fj .

Remark that if fi, fj are reduced w.r.t. each other then vfi
�= vfj

and we can always assume that in an autoreduced
set F = {f1, . . . , fs} the Δ-polynomials are ranked in order of increasing height.

Let F = {f1, . . . , fs} be an autoreduced set of Δ-polynomials, then we define the following Δ-polynomial HF :=∏s
i=1 Ifi

Sfi
. Remark that, since F is autoreduced, HF is partially reduced w.r.t. F .

Definition 1.2. An autoreduced set F = {f1, . . . , fs} ⊆ M{y} is coherent if for any i �= j , if θh is the least (in the
ranking of Θ) derivative operator such that there exist θi, θj ∈ Θ with θivfi

= θj vfj
= θhy then Sfj

θifi − Sfi
θjfj

belongs to (F )h−1 which is the ideal of M{y} generated by the θfi with θθhfi
� θh−1 (remark that [F ] = ⋃

h∈N
(F )h).

2. Axiomatization of m-CODF

We now consider an ordered Δ-field M , i.e. an ordered field equipped with a set Δ of m commuting derivations
which do not interact with the order.

Definition 2.1. M is a closed ordered Δ-field if it is real closed and, for any coherent autoreduced set F =
{f1, . . . , fs} ⊂ M{y} such that the ideal (F ) : HF

∞ := {f ∈ M{y} | HF
nf ∈ (F ) for some n ∈ N} is prime and does

not contain any nonzero element reduced w.r.t. F , and any g1, . . . , gl ∈ M{y} reduced w.r.t. F , the system(
s∧

i=1

fi(y) = 0 ∧ HF (y) �= 0 ∧
l∧

j=1

gj (y) > 0

)
(∗)

has a differential solution as soon as the system (∗̃), obtained from (∗) by considering the Δ-polynomials as ordinary
polynomials (i.e. we replace any θiy appearing in (∗) by a new variable Xi ) has an algebraic solution (x0, . . . , xr )

in M .
We denote by m-CODF the theory of closed ordered Δ-fields in the language LΔ

< = {+,−,∗, δ1, . . . , δm,0,1,<}.

The axioms in Definition 2.1 can be proved to be first-order (in the coefficients of f1, . . . , fs ) using the work in
[4] and the fact that (F ) : HF

∞ = ((F ),XHF − 1) ∩ M{y} where X is a new indeterminate. Details can be found in
[3, Chapter 4].
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From now on, we write f̃ for the polynomial in the variables X0, . . . ,Xhf
obtained from f by replacing any θly

by a new variable Xl (l � hf ) and F̃ for the set of polynomials {f̃1, . . . , f̃s}.

Theorem 2.2. The theory m-CODF of closed ordered Δ-fields is the model completion of the theory m-ODD of
ordered Δ-domains (in particular it is the model completion of m-ODF ).

Furthermore, since m-ODD is universally axiomatized in LΔ
<, m-CODF has quantifier elimination in this language.

To prove this theorem we have to show first that each ordered Δ-field extends to a model of m-CODF and then that
we can complete any diagram as in Blum’s criterion (see [2, Theorem 17.2]).

Proof (1). Let M be an ordered Δ-domain. Since the derivations and the order on M extend uniquely to the real
closure of the quotient field of M , we can assume that M |= m-ODF and is a real closed field.

Let f1, . . . , fs, g1, . . . , gl ∈ M{y} be as in the axioms of m-CODF and remark first that the fact that (F ) : HF
∞

is prime and does not contains any nonzero element reduced w.r.t. F implies that the Δ-polynomials f1, . . . , fs are
irreducible.

Assume that hi is the height of fi (with h1 < · · · < hs ) and that hr is maximal amongst the heights of the elements
of F ∪ {g1, . . . , gl}. We consider the set I of positive integers n such that θn(y) appears non trivially in one of the
Δ-polynomials in F ∪ {g1, . . . , gl} and denote by J the set {h1, . . . , hs} (obviously, J ⊆ I ). Furthermore for any
i ∈ {1, . . . , s} we define Di := {n ∈ N | ∃j � 1 θn(y) = θj (vfi

)} and D := ⋃s
i=1 Di .

Remark that, since F is autoreduced and {g1, . . . , gl} is reduced w.r.t. F , D ∩ I = ∅.
We now consider an infinite tuple ā = (a0, a1, . . .) ∈ Mω which is a solution of the system (∗̃).
By [1, Lemma IV.9.2] the ideal P = [F ] : HF

∞ is a prime Δ-ideal with characteristic set F . Moreover if 0 �= g ∈
M{y} is reduced with respect to F , then g(y) /∈ P (see [1, IV.9.2] and also the remark following [1, Lemma III.2.1]).
Let L be the field of fractions of M{y} \P , and denote the image of y in L by c. Note that the derivations in Δ extend
uniquely to L and also to its algebraic closure.

We will show that we can define an ordering on L which extends the ordering on M and satisfies: for each i ∈ I the
element θic−ai is infinitesimal with respect to M . This will imply that c is a solution of (∗), since each gj (c)− g̃j (ā)

will then be infinitesimal with respect to M , and therefore gj (c) will have the same sign as g̃j (ā).
We will define recursively the ordering on each field Li := M(c, . . . , θic) for i ∈ N.

Case 1. i /∈ D ∪ J .

If f (y) ∈ M{y} is of height i then f (y) is reduced with respect to F . Hence such an f (y) does not belong
to P . Thus θic is transcendental over Li−1. We can therefore extend the ordering of Li−1 to Li so that θic − ai is
infinitesimal with respect to Li−1.

Case 2. i ∈ J .

Then there exists j ∈ {1, . . . , s} with i = hj . Remark that, since HF (ā) �= 0, ai is a simple root of the
polynomial f̃j (a0, . . . , ai−1,Xi) and that the coefficients of this polynomial are infinitesimally close to those of
fj (c, . . . , θi−1c,Xi). Hence, since polynomial functions are continuous for the order topology, these two polynomials
have the same degree in Xi and f̃j (c, . . . , θi−1c,Xi) has a simple root d in the real closure of Li−1.

Case 3. i ∈ D.

Assume first that θiy = δuθhj
for some j ∈ {1, . . . , s}. Using the fact that fj (c) = 0 and Sfj

(c) �= 0, and that if
h < hj , then δuθh < θi , we obtain that θic ∈ Li−1. In the general case, θiy = θθh for some j ∈ {1, . . . , s} and θ ∈ Θ ,
and an easy induction on the order of θ shows that θic ∈ Li−1.

Using a transfinite induction one can build an ordered differential field which satisfies the axioms of m-CODF.
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Proof (2). We want to check that Blum’s criterion holds (as before we can assume that M and M(a) are models of
m-ODF). For this, let M∗ be an |M|+-saturated elementary extension of M and a an element in some ordered Δ-field
extending M .

(a) Suppose first that a is Δ-algebraic over M , i.e. there exists a Δ-polynomial f ∈ M{y} such that f (a) = 0.
Let I be the prime Δ-ideal I 〈a/M〉 = {f ∈ M{y} | f (a) = 0}. By [1, Proposition 3 p. 81 and Lemma 2 p. 167],

there exists an autoreduced coherent subset F = {f1, . . . , fs} of I such that (F ) : HF
∞ is prime, contains no nonzero

reduced element w.r.t. F , and I = [F ] : HF
∞. Then the isomorphism type of the ordered Δ-field M〈a〉 generated by

a over M is completely determined by the equations f1(a) = · · · = fs(a) = 0 and a list of inequations of the form
gj (a) > 0 where gj is a Δ-polynomial that we can assume to be reduced w.r.t. F by [1, Proposition 1, p. 79]. Since
Ifj

and Sfj
are reduced w.r.t. F for any j ∈ {1, . . . , s} and (F ) : HF

∞ is prime, HF does not belong to this ideal. It
follows, by [1, Lemma 5 p. 137], that HF does not belong to the Δ-ideal [F ] : HF

∞.
Hence, for any system S ≡ (

∧s
i=1 fi(y) = 0 ∧ HF (y) �= 0 ∧ ∧l

j=1 gj (y) > 0) where g1, . . . , gl ∈ M{y} is a finite

collection of Δ-polynomials reduced w.r.t. F such that gj (a) > 0, there exists an algebraic solution to the system S̃
in an ordered field extending M (namely, this solution is (a, θ1(a), . . . , θr (a)) where r is the maximal height of an
element of F ∪ {g1, . . . , gl}).

Since M∗ is a real closed field, it also contains an algebraic solution of S̃ . Furthermore M∗ |= m-CODF and hence
S has a differential solution u in M∗. By the saturation of M∗ there exists a solution c in M∗ to all the above systems
where the gj ’s range over the Δ-polynomials reduced w.r.t. F . In other words M〈c〉 is (LΔ

<)-isomorphic to M〈a〉.
(b) The case when a is not Δ-algebraic (i.e. is Δ-transcendental) over M can be proved similarly: consider systems

S ≡ (θhr+1(y) = 0 ∧ ∧l
j=1 gj (y) > 0) where g1, . . . , gl have height at most hr . Letting hr tend to ∞, the axiomati-

zation of m-CODF and the saturation of M∗ provide an element c in M∗ which is Δ-transcendental over M . In other
words c is such that M〈c〉 is (LΔ

<)-isomorphic to M〈a〉.
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