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Abstract

In this note, we describe the stationary equilibria and the asymptotic behaviour of an heterogeneous logistic reaction-diffusion
equation under the influence of autonomous or time-periodic forcing terms. We show that the study of the asymptotic behaviour in
the time-periodic forcing case can be reduced to the autonomous one, the last one being described in function of the ‘size’ of the
external perturbation. Our results can be interpreted in terms of maximal sustainable yields from populations. We briefly discuss
this last aspect through a numerical computation. To cite this article: M.D. Chekroun, L.J. Roques, C. R. Acad. Sci. Paris, Ser. I
343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Analyse de modèles de dynamique de populations sous l’influence de perturbations externes. Cette Note a pour objet
l’étude des états stationnaires et du comportement asymptotique d’équations de réaction-diffusion avec coefficients hétérogènes en
espace, auxquelles nous ajoutons un terme de perturbation stationnaire ou périodique en temps. Nos résultats peuvent s’interpreter
en termes de prélèvement maximal supportable par une population. Nous soulignons cet aspect à l’aide d’un calcul numérique.
Pour citer cet article : M.D. Chekroun, L.J. Roques, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The purpose of this Note is to study the following model:

ut = ∇ · (A(x)∇u
) + u

(
μ(x) − ν(x)u

) − f (ωt, x)ρε(u), (t, x) ∈ R+ × Ω. (1)

The reaction–diffusion models of the type ut = ∇ · (A(x)∇u) + u(μ(x) − ν(x)u) correspond to the natural extension
of the classical Fisher model [3]. They were first introduced by Shigesada et al. [8] for population dynamics. Our
aim is to understand the asymptotic behaviour of the solutions of such models, when we add a time-periodic forcing
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term f (ωt, x). With such additional term, this can be interpreted as an harvesting model with seasonal harvesting. In
real-life context this perturbation term can arise when a quota is set on the harvesters.

We make the following assumptions on the coefficients: the diffusion matrix A(x) is assumed to be of class C1,α

(with α > 0) and uniformly elliptic; i.e. there exists τ > 0 such that A(x) � τIN for all x ∈ Ω . The functions μ and
ν belong to L∞(Ω). Moreover, we assume that there exist ν and ν such that 0 < ν < ν(x) < ν for all x in Ω . The
function f is 1-periodic in the first variable and belongs to C0(R × Ω), and the function ρε defines a ‘regularized
threshold’: it is a C1(R) nondecreasing function such that ρε(s) = 0 for all s � 0 and ρε(s) = 1 for all s � ε. This
threshold guarantees the non-negativity of the solutions of (1).

Two kinds of domains Ω are considered: either Ω = R
N or Ω is a smooth bounded domain of R

N . We qualify
the first case, Ω = R

N , as the sp-case and the second one as the bounded case. Indeed, in the sp-case, we assume
that A(x), μ(x), ν(x) and f (s, x) depend on the variables x = (x1, · · · , xN) in a space-periodic fashion (i.e. for
L1, . . . ,LN fixed positive numbers, a function g is said to be sp-periodic if g(x + k) = g(x) for all x ∈ R

N and
k ∈ L1Z × · · · × LNZ). In the bounded case, throughout this Note, we assume that we have Neumann boundary
conditions on ∂Ω .

2. The case of autonomous forcing

All the results of this section remain true either in the sp-periodic or bounded cases. The proofs are detailed in [6].
We consider Eq. (1) with f (wt, x) = δh(x), i.e.

ut = ∇ · (A(x)∇u
) + u

(
μ(x) − ν(x)u

) − δh(x)ρε(u), (t, x) ∈ R+ × Ω, (2)

where h is a continuous function such that there exist α,β > 0 with α < h(x) < β for all x ∈ Ω , and which is sp-
periodic in the sp-case.

Let λ1 be defined as the unique real number such that there exists a function φ > 0 which satisfies

−∇ · (A(x)∇φ
) − μ(x)φ = λ1φ in Ω, φ > 0 and ‖φ‖∞ = 1, (3)

with either periodic or Neumann boundary conditions, depending on Ω , as mentioned above. The function φ is
uniquely defined by (3) (the existence and uniqueness of λ1 and φ follow from the standard Krein–Rutman theory).

Remark 1. Note that if we assume that λ1 < 0 and δ = 0, then, given any continuous and bounded function u0, the
solution u(t, x) of (2) with initial data u0 converges to a function p which is the unique bounded and positive solution
of ∇ · (A(x)∇p) + p(μ(x) − ν(x)p) = 0, x ∈ Ω . These convergence, as well as existence and uniqueness results are
proved in [1].

We first describe the steady states of (2) without ‘regularized threshold’:

∇ · (A(x)∇pδ

) + pδ

(
μ(x) − ν(x)pδ

) − δh(x) = 0, x ∈ Ω. (4)

Using a Leray–Schauder degree argument, together with the uniqueness of the solution p defined in the above remark,
we prove the following:

Theorem 2.1. There exists δ∗ > 0 such that for all δ s.t. 0 < δ < δ∗, (4) admits two distinct positive solutions, p1
δ

and p2
δ . Moreover, p1

δ → 0 and p2
δ → p uniformly in Ω as δ → 0.

Let us set φ := minx∈Ω φ(x), δ1 := λ2
1φ

βν(1+φ)2 and δ2 := λ2
1

4αν
. Then we have the following theorem:

Theorem 2.2. (i) If λ1 < 0 and δ � δ1, then there exists a positive bounded solution pδ of (4) such that pδ � − λ1φ
ν(1+φ)

(in particular maxpδ � −λ1
2ν

).
(ii) If λ1 < 0 and δ > δ2, or if λ1 � 0, there is no positive bounded solution of (4).

The proof relies on monotone methods of sub- and super-solutions. For the existence result (i), we have computed
a sub-solution of the form κφ with κ > 0. The optimal value of κ , in the sense that it gives the highest value of δ1, is
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Fig. 1. N = 2, A = I2, ν ≡ 1, h ≡ 1 and μ(x) is (1,1)-periodic and takes two values, μ ≡ −1 on Ω− and μ ≡ 10 on Ω+ , where Ω+ consists on
k2 equally-spaced disks such that, on each period cell [0,1]2, |Ω+ ∩ [0,1]2| = 1/2, and Ω− = R

2\Ω+ . (a) A period cell with k = 2 (b) k = 10;
Ω+ is represented in black. (c) The values of δ1 (continuous line) and δ2 (dashed line) in function of k.

κ0 = −λ1/(ν + νφ). We have numerically computed the values of δ1 and δ2 in several particular examples of sp-case
(see Fig. 1). The results illustrate the effect of environmental fragmentation on the maximum sustainable yield, and
show that the interval (δ1, δ2] on which we have no theoretical information can be very narrow (see Fig. 1(c)).

Let us turn to the study of the evolution equation (2). We assume that λ1 < 0 and ε is such that ε0 := 2 εν
φ

< −λ1
2 ;

we prove the following theorem:

Theorem 2.3. Let u(t, x) be the solution of (2) with initial data u(0, x) = p(x) defined in Remark 1. Then u is
non-increasing in t and we have the following asymptotic behaviour

(i) if δ � δ1, u(t, x) → pδ(x) uniformly in Ω as t → +∞, where pδ is the unique positive maximal solution of (4);
and

(ii) if δ > δ2, then u(t, x) < ε0 for t large enough.

In the above theorem, we assume that u(0, x) = p(x). This means that harvesting starts on a stabilized population
governed by the standard Shigesada et al. model without external forcing.

Remark 2. These results are sharper than those which could be obtained by a standard La Salle invariance principle,
since we obtain here discriminatory bounds on δ, which determine the asymptotic behaviour of the solutions.

3. Time-periodic forcing

In this section we consider the general equation (1) in the bounded case, with ω > 0 defined as the frequency of the
forcing term. All the results are proved in [2]. Let us introduce T := ω−1. It is known that under the above assumptions
on A(x), Au = −∇ · (A(x)∇u) is a sectorial operator with domain D(A) = {u ∈ H 2(Ω), s.t. ∂nu = 0 on ∂Ω} (see
e.g. [5]). As a consequence, −A generates an analytic semigroup e−At on L2(Ω). Let {V 2r}{r�0} be the family of
interpolation spaces generated by the fractional powers of A, where V 2r = D(Ar ) (see [7] for details). The existence
of a T -periodic solution of Eq. (1) can be reached by several procedures (e.g. averaging method [4]). We present
here a result on the existence of a hyperbolic T -periodic solution, which is related to the robustness of a hyperbolic
stationary solution of the autonomous equation (2), with δh(x) = ∫ 1

0 f (s, x)ds. More precisely,

Theorem 3.1. Assume that Eq. (2) has a hyperbolic stationary solution q ∈ V 2r , 0 � r � 1. Then there exists ω∗ > 0
such that for every ω � ω∗, the problem (1) possesses a hyperbolic T -periodic solution uω(t) such that for any
t ∈ [0, T ], uω(t) lives in a V 2r -neighborhood of q . Furthermore if ω → +∞, then uω(t) → q in V 2r .
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The proof uses similar arguments as the one of [7] Theorem 76.1, and is therefore based on a Lyapunov–Perron
type argument; the existence of such a hyperbolic periodic orbit is achieved via a fixed point argument on the following
operator:

ξ → T (f )ξ :=
t∫

−∞
Q e−L(t−s)

(
E(q, ξ) + f (ws, ·))ds −

+∞∫
t

P e−L(t−s)
(
E(q, ξ) + f (ws, ·))ds, (5)

where L = A− (μ(x) − 2ν(x)q)I , E(q, ξ) = −2ν(x)ξ2, ξ belongs to a subset of L∞(R,V 2r ) ∩ C0(R,V 2r ), and P

and Q are the associated projectors with the exponential dichotomy for Eq. (2) related to the existence of a hyperbolic
stationary solution.

The main interest of Theorem 3.1 is that it gives a simple sufficient condition to ensure the existence of a T -periodic
solution of (1) and that it allows to localize in physical space where this solution can appear. Another interesting
aspect of this theorem is that it reduces the study of existence and stability of a T -periodic solution of (1) to that of the
hyperbolic equilibria of the autonomous version (2). For instance we get as an application of Theorems 2.2 and 3.1
for λ1 < 0 and f (wt, x) = δg(wt, x) with α <

∫ 1
0 g(s, x)ds < β for all x ∈ Ω , that if δ � δ1 and ω sufficiently large,

then there exists a stable non-trivial T -periodic solution uω,δ of (1) in a neighborhood of a solution pδ of (4).
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