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Abstract

We obtain the energy functional of Reissner–Mindlin plates as the Γ -limit of a family of three-dimensional energy functionals
within the framework of second-order linear elasticity. The choice of the family of functionals, as well as of the candidate limiting
functional, is guided by a formal scaling argument. To cite this article: R. Paroni et al., C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La théorie des plaques de Reissner–Mindlin via Γ -convergence. Nous obtenons la fonctionnelle de l’énergie de plaques de
Reissner–Mindlin comme la Γ -limite d’une famille de fonctionnelles d’énergie tri-dimensionnelles dans le cadre de l’élasticité
linéaire du second ordre. Les choix de la famille de fonctionnelles et de la fonctionnelle limite sont suggérés par l’étude formelle
des mises à l’échelle. Pour citer cet article : R. Paroni et al., C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

To derive the equations of thin structures from three-dimensional elasticity, one has to set up some limit process
when thickness tends to zero. The immense literature on the subject may be sorted out according to the approach to
the thickness limit. Three such approaches have been successfully proposed: asymptotic analysis, variational conver-
gence, and formal scaling, the latter as an evolution of the method of internal constraints. Whatever the approach,
if classic elasticity is selected as parent three-dimensional theory, then the induced lower-dimensional models have
the mathematical form of Kirchhoff–Love’s for plates and Bernoulli–Navier’s for rods, that is to say, models of thin
structures that can bend, but cannot shear. Thus, all approaches seem to be equally faulty, because they cannot cap-
ture thinness while preserving shear ability. This remarkable coincidence of failures indicates the need for a common
change in format. Now, inspection of standard engineering derivations of the equations of shearable thin structures,
makes clear that each of the kinematical Ansätze on which those derivations are based is in fact equivalent to a specific
set of internal constraints, on both the first and the second gradient of admissible displacement fields: the first-order
constraints are incompatible with the assumption of isotropicity; the second-order constraints call for stored-energy
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functions including second-gradient terms. Building on these observations in the light of the method of formal scal-
ing, it can be shown that, if the material is presumed to be transversely isotropic, theories of either unshearable or
shearable thin structures can be obtained; and that, if the stored-energy density features certain second-gradient terms,
then shearable structure models obtain, including Reissner–Mindlin’s plates and Timoshenko’s rods [3]. These results
prompt a conjecture: were the same parent theory chosen as in [3], either asymptotic analysis or variational conver-
gence would also give those structure theories a precise limit position, this time, however, within a carefully stated
functional setting. In this writing, exploiting the guidance offered by the formal scaling argument given in [3], we
prove that such a conjecture holds true, in that we give the energy functional of Reissner–Mindlin plates the status
of Γ -limit of a suitable family of three-dimensional energy functionals within the framework of second-order linear
elasticity.

2. Formal scaling

Following [3], we pick a second-order elastic material whose stored-energy density is

σ
(∇u,∇(2)u

) = σ (1)(∇u) + σ (2)
(∇(2)u

)
,

with 2σ (1)(∇u) = Sij (E(u))Eij (u), 2σ (2)(∇(2)u) = Hα33(G(u))Gα33(u) (repeated Latin and Greek indices run over
{1,2,3} and {1,2}, respectively; E is the standard strain and G the hyperstrain, of Cartesian components 2Eij (u) =
ui,j +uj ,i and Gα33(u) = uα,33). The constitutive dependences are:

Sαβ = 2μEαβ + (λ(E11 + E22) + τ2E33)δαβ, S3α = 2γE3α, S33 = τ1E33 + τ2(E11 + E22)

for the standard stress S on E, and Hα33 = τP Gα33 for the hyperstress H on G (so that the material is transversely
isotropic with respect to the axial direction e3). Positivity of the stored-energy density is guaranteed by the inequalities
μ > 0, γ > 0, τ1 > 0, τ1(λ + μ) − τ 2

2 > 0, τP > 0.
Let C(ε) = P(ε) ×R(ε) be a right cylinder of cross-section P(ε) and axis R(ε) of length 2h(ε), comprised of an

elastic material with stored-energy as above. We scale the in-plane and out-of-plane coordinates xα, x3, the Cartesian
components uα,u3 of the displacement field, and the material moduli λ,μ, . . . , τP , as follows: xα = εpx̄α, x3 =
εq x̄3; uα = εmūα, u3 = εnū3; λ̄ = ε−rλ, μ̄ = ε−rμ, γ̄ = ε−uγ, τ̄1 = ε−vτ1, τ̄2 = ε−zτ2, τ̄P = ε−iτP . The scaling
exponents (m,n,p, q; r, u, v, z, i) are relative integers that can be chosen according to convenience, provided they
satisfy the following restrictions: q = m − n + p, r = 2z − v, whose physical significance is discussed in [3]. For
�̂ ≡ (α̂, β̂1, β̂2, γ̂ , ι̂) a list of energy exponents

α̂ = −m + 3n + p + v, β̂1 = m + n + p + u, β̂2 = m + n + p + z,

γ̂ = 3m − n + p + 2z − v, ι̂ = i + 2p − q, (1)

and for each ε > 0 fixed, a formal scaling of the stored-energy functional Σ(u, ε) = ∫
C(ε)

σ (∇u,∇(2)u) produces the
auxiliary energy functional:

Σ̂(ū, ε; �̂) = εα̂

[∫
C

1

2
τ̄1E

2
33

]
+ εβ̂1

[∫
C

2γ̄
(
E 2

13 + E 2
23

)] + εβ̂2

[∫
C

τ̄2E33
(
E11 + E22

)]

+ εγ̂

[∫
C

1

2

(
(λ̄ + 2μ̄)

(
E11 + E22

)2 − 4μ̄
(
E11E22 − E 2

12

))] + ει̂1

[∫
C

1

2
τ̄P

∑
α

(ūα,33 )2
]
,

with C the right cylinder of cross section P(1) and length 2h(1). All the integral addenda are positive, except the third;
we regard as admissible any displacement field ū at which they all have finite value.

As shown in [3], the requirement that, at each admissible displacement, the auxiliary energy functional stay
bounded above as ε → 0+:

lim
ε→0+ Σ̂(ū, ε; �̂ ) =: Σ(ū; �̂) < +∞ (2)

can be satisfied for various choices of �̂ (all consistent with the identity α̂ − 2β̂2 + γ̂ = 0), so as to produce an
exhaustive taxonomy of limit functionals Σ(ū; �̂ ), each of which, after inverse scaling, can be shown to rule a well-
identified structure problem.
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The choice of energy exponents leading to the Reissner–Mindlin plate theory is: α̂ < 0, β̂1 = γ̂ = 0, ι < 0,
and is compatible with infinitely many lists of scaling exponents. Now, when methods of asymptotic analysis [1] or
variational convergence are used, the customary (domain, displacement) scaling is: m = 1, n = 0, p = 0, q = 1;
with this, (1) imply that α̂ = −1 + v, β̂1 = 1 + u, β̂2 = 1 + z, γ̂ = 3 + 2z − v, ι̂ = i − 1. We then take u = −1 and
2z − v = −3 = r (r = −3 is another customary choice), and we are left with the following limitations: v < 1, i < 1,
that we satisfy by choosing v = −1 = i. All in all, the ε–family of auxiliary energy functionals we select is

Σ̂RM(ū, ε) := Σ̂(ū, ε; �̂RM) =
∫
C

σε

(
E,G

)
, �̂RM ≡ (−2,0,−1,0,−2), E = E(ū), G = G(ū), (3)

where the integrand σε(E,G) := σ
(1)
ε (E) + σ

(2)
ε (G) is positive, and where

σ (1)
ε (Ē) := 2γ̄

(
E 2

13 + E 2
23

) + 1

2
(λ̄ + 2μ̄)

(
E11 + E22

)2 − 4μ̄
(
E11E22 − E 2

12

)
+ε−2

[
1

2
τ̄1

(
E33

)2
]

+ ε−1[τ̄2
(
E11 + E22

)
E33

]
, σ (2)

ε (G) := ε−2
[

1

2
τ̄P

∑
α

G2
α33

]
. (4)

With (3) and (4), the boundedness requirement (2) has the following consequences:

ΣRM(ū) =
∫
C

(
2γ̄

(
E 2

13 + E 2
23

) + 1

2
(λ̄ + 2μ̄)

(
E11 + E22

)2 − 4μ̄
(
E11E22 − E 2

12

));

ū3,3 = 0, ūα,33 = 0; (5)

the general solution of the system of PDEs (5)2,3 is:

ūα = v̂α(x̄1, x̄2) + x̄3ϕ̂α(x̄1, x̄2), ū3 = û3(x̄1, x̄2), (6)

that is to say, the kinematical Ansatz the Reissner–Mindlin plate theory is based on. Note that

min
ρ∈R

σ (1)
ε

(
E + ρe3 ⊗ e3

) = 2γ̄
(
E 2

13 + E 2
23

) + 1

2
(λ̃ + 2μ̄)

(
E11 + E22

)2 − 4μ̄
(
E11E22 − E 2

12

) =: σ̃ (
E

)
, (7)

where λ̃ := λ̄ − τ̄ 2
2 /τ̄1 and the minimum is attained at (E33)min = −ε(τ̄2/τ̄1)

∑
α Eαα ; note also that ΣRM(ū) >

Σ̃RM(ū) := ∫
C

σ̃ (E(ū)) � 0. As a candidate Γ -limit of the family Σ̂RM(·, ε), we pick the functional Σ̃RM, defined
over the class (6) of displacement fields. A detailed justification of this choice will be given elsewhere.

3. Variational convergence

Let the family of functionals Σ̂RM(·, ε) in (3), (4) be defined over the space of admissible displacements

A := {
ū ∈ H 1(C,R

3) | ūα,33 ∈ L2(C), ū = 0 on ∂P ×R
}

(for brevity and simplicity, we here limit ourselves to clamped–edge boundary conditions), and let the space of
Reissner–Mindlin displacements be

RM := {
ū ∈ H 1(C,R

3) | ∃v̂α, ϕ̂α, û3 ∈ H 1
0 (P): ūα = v̂α(x̄1, x̄2) + x̄3ϕ̂α(x̄1, x̄2), ū3 = û3(x̄1, x̄2)

}
.

This displacement class, also considered in [2], is here brought to attention as a consequence of the requirement that a
suitable family of functionals be bounded [3]; such a requirement is the content of the next lemma, whose easy proof
we omit.

Lemma 1. Let {ūε} ⊂ A be any sequence such that supε∈(0,1) Σ̂RM(ūε, ε) < +∞. Then, there are a subsequence (not
relabeled) of {ūε} and a displacement field ū ∈RM such that ūε ⇀ ū in H 1(C,R

3).

Theorem 2. Let the extended Reissner–Mindlin functionals Σ̂e
RM(·, ε), Σ̃e(·) over L2(C,R

3) be:

Σ̂e
RM(ū, ε) :=

{
Σ̂RM(ū, ε) if ū ∈ A,

+∞ otherwise,
and Σ̃e

RM(ū) :=
{

Σ̃RM(ū) if ū ∈RM,

+∞ otherwise.

Then, the family Σ̂e (·, ε) sequentially Γ -converges to Σ̃e , with respect to the L2(C) topology, i.e.,
RM RM
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(i) [Liminf Inequality] for every sequence of positive numbers εk converging to 0, and for every pair of a sequence
{ūεk } ⊂ L2(C,R

3) and field ū ∈ L2(C,R
3) such that ūεk → ū in L2(C,R

3),

lim inf
εk→0

Σ̂e
RM(ūεk , εk) � Σ̃e

RM(ū);

(ii) [Recovery Sequence] for every sequence of positive numbers εk converging to 0, and for every field ū ∈ L2(C,R
3),

there is a sequence {ūεk } ⊂ L2(C,R
3) such that ūεk → ū in L2(C,R

3), and

lim sup
εk→0

Σ̂e
RM(ūεk , εk) � Σ̃e

RM(ū).

Proof. Let {ūε} ⊂ L2(C,R
3) and ū ∈ L2(C,R

3) be such that ūε → ū in L2(C,R
3). Without loss of generality, we

may assume that lim infε→0 Σ̂e
RM(ūε, ε) < +∞, and hence that supε Σ̂e

RM(ūε, ε) < +∞. By Lemma 1, it then follows
that ūε ⇀ ū in H 1(C,R

3), and that ū ∈RM. We then have:

lim inf
ε→0

Σ̂e
RM(ūε, ε) � lim inf

ε→0

∫
C

σ (1)
ε

(
Eε

)
� lim inf

ε→0

∫
C

σ̃
(
Eε

)
�

∫
C

σ̃
(
E
) = Σ̃e

RM(ū)

(the last inequality of the chain holds because of the convexity of σ̃ ). This proves the Liminf Inequality.
To prove that the Recovery-Sequence Condition holds, it suffices to take ū ∈ RM (otherwise, the inequality is

trivially satisfied). Actually, we begin by taking ū in RM∩C∞(C,R
3). There are then smooth functions v̂α, ϕ̂α, û3 ∈

H 1
0 (P) such as to satisfy (6). Let {εk} be a sequence of positive numbers converging to 0, and let

ūεk
α = v̂α(x̄1, x̄2) + x̄3ϕ̂α(x̄1, x̄2), ū

εk

3 = û3(x̄1, x̄2) − εk

τ̄2

τ̄1

∑
α

(
x̄3v̂α,α + x̄2

3

2
ϕ̂α,α

)
.

Then, it is clear that ūεk → ū in L2(C,R
3); moreover, E

εk

33 = −εk
τ̄2
τ̄1

∑
α(v̂α,α + x̄3ϕ̂α,α) = −εk

τ̄2
τ̄1

∑
α Ē

εk
αα ; with this,

we deduce that σ
(1)
εk

(Eεk ) = σ̃ (Eεk ). This result, the fact that ū
εk

α,33 = 0, and the fact that E
εk

αβ = Eαβ and E
εk

α3 =
Eα3 − εkRα3, Rα3 := τ̄2

τ̄1

∑
β(x̄3v̂β,βα + x̄2

3
2 ϕ̂β,βα), allows us to conclude that

Σ̂e
RM

(
ūεk , εk

) = Σ̃e
RM(ū) + εk

∑
α

∫
C

2γ̄
(
(Rα3)

2 − 2Rα3Eα3
);

finally, by letting εk to zero, the R-S Condition is proven for ū ∈ RM ∩ C∞(C,R
3). A classical density and diago-

nalization argument concludes the proof. �
Minimizing the extended functional Σ̂e

RM is the same as minimizing Σ̂RM; an analogous remark applies to the limit
functionals. Theorem 2 and standard Γ -convergence arguments imply that the minimizers of Σ̂RM(·, ε) converge in
L2(C,R

3) to the minimizers of Σ̃RM. Convergence of minimizers in the strong H 1(C,R
3) topology follows from

Lemma 1 and the fact that stored energies are strictly convex.
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