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Numerical Analysis

Computation of the normal vector to a free surface
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Abstract

In volume tracking finite volume schemes for free surface flows, the reconstruction of the interface and the computation of surface
tension effects require an accurate approximation of the normal vector to the interface. A numerical method for the computation of
the normal vector is presented here, based on a finite element approach. We use projections to interpolate the volume fraction of
liquid between the finite volume mesh and a nested finite element mesh. Error estimates are obtained and numerical results show
the efficiency and flexibility of the approach discussed here. To cite this article: A. Caboussat et al., C. R. Acad. Sci. Paris, Ser. I
343 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Calcul du vecteur normal à une surface libre par une méthode mixte d’éléments finis – volumes finis. Dans la plupart des
schémas de type volume finis pour des problèmes de surface libre, la reconstruction de l’interface et le calcul des effets de tension
de surface nécessitent une approximation précise du vecteur normal à l’interface. Nous présentons une méthode numérique pour le
calcul du vecteur normal, basée sur une approche de type éléments finis. Nous interpolons la fraction liquide de la grille volumes
finis sur un maillage emboité de type éléments finis à l’aide de projections. Nous obtenons des estimations d’erreurs a priori et
l’efficacité de la méthode est confirmée par les résultats d’essais numériques. Pour citer cet article : A. Caboussat et al., C. R.
Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In free surface flow simulations, the accurate approximation of the free surface between two media is a crucial
issue. In finite volume based volume tracking methods, the reconstruction of the interface between two or more
media is required. Several models for the reconstruction of the interface exist in the literature. For instance the PLIC
(Piecewise linear interface calculation) procedure [1,11] requires an approximation of the normal vector to the free
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surface in each interface cell of the discretization to determine the orientation of the interface [6]. An approximation
of the normal vector is also needed for the computation of the surface tension effects [7] and the fluxes [9]. We present
a consistent approximation of the normal vector in each cell of a finite volume mesh composed by hexahedra, based
on an auxiliary nested finite element mesh of tetrahedra. Following the idea of [3], projections are used to obtain a
piecewise linear finite element approximation of each volume fraction on the finite element mesh [2]. The values of
the normal vector are obtained by Clément interpolation [4] at the vertices of the finite element mesh. Error estimates
are obtained to highlight the effect of the additional procedure on the total error of the scheme.

2. The model and a finite volume scheme

Let Ω be a bounded domain in two or three space dimensions and ∂Ω be its boundary. Let T > 0 be a finite time.
Let M be the total number of materials (phases) existing in the system. Let ρ denote the density of the fluid and μ its
viscosity, both being constant in each material but discontinuous across the interfaces. The velocity of the fluid u and
the pressure p are assumed to satisfy the incompressible Navier–Stokes equations, which consist of the conservation
of mass and momentum in the space-time domain Ω × (0, T ):

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · (μ(∇u + ∇uT)) + f, in Ω × (0, T ),

∇ · u = 0, in Ω × (0, T ),

where f denotes the surface and body forces applied onto the fluid. Initial conditions are imposed on the velocity u
at time t = 0. Boundary conditions are classical boundary conditions on ∂Ω for the velocity u (slip and/or no-slip).
The boundary condition at the free surface between two materials is a normal force balance given by [−pn +μ(∇u +
∇uT) · n] = σκn, where [·] denotes the jump over the interface between the two materials, σ is the surface tension
coefficient, κ is the curvature of the interface and n is the normal vector to the interface. The volume fraction of
material k, denoted by fk , k = 1, . . . ,M , is the characteristic function of the domain occupied by the material k and
satisfies the advection equation:

∂fk

∂t
+ u · ∇fk = 0, in Ω × (0, T ), k = 1, . . . ,M. (1)

Let Qh denote the finite volume (unstructured) quadrangulation of Ω and denote by Q any generic hexahedron
of Qh. The numerical algorithm is based on operator splitting theory and allows to decouple the reconstruction of the
interface from the other physical phenomena. Let us consider the case with two phases (M = 2). Eq. (1) is solved with
a finite volume scheme [5,7] to obtain an approximation of fk at time tn+1 that is piecewise constant in each cell.
The PLIC algorithm [1,11] allows us to reconstruct a planar approximation of the interface. The approximation of the
normal vector

nk = ∇fk

|∇fk| , k = 1, . . . ,M,

is located at the center of each cell and gives the orientation of the local interface within the cell Q for the reconstruc-
tion of the planar interface [11].

The reconstruction of the interface in the algorithm relies on the approximation of the normal vector and uniquely
determines the computation of the fluxes across each face of the cell Q. The approximation of the normal vector is also
required for the computation of the surface tension effects on the interface. The computation of the surface tension
effects in a finite volume framework uses an approximation of the normal vector located at the center of the cell faces
that are on the interface. We refer to [5,7,11] and references therein for the extensive description of the method. The
determination of the normal vector at the interface plays a central role in the whole algorithm. A consistent finite
elements based technique for its approximation is presented in the following.

3. A finite element approach for the computation of the normal vector

Let h denote the maximal diameter of the cells of the finite volume mesh. Let f ∈ L2(Ω) be a generic volume
fraction of liquid and f0,h ∈ P0 its piecewise constant approximation on Qh [1,11] obtained with a finite volume
scheme, whose values are located at the center of each cell.
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Fig. 1. Decomposition of one cell into tetrahedra. Left: one hexahedron is split into twenty-four tetrahedra in 3D. Right: one quadrangle is split into
eight triangles in 2D.

A finite element mesh is nested into the initial finite volume quadrangulation as illustrated in Fig. 1. The introduc-
tion of a finite element mesh is designed in order to obtain a consistent approximation of the field f at the center of the
faces of the cells and at the vertices of each cell [10]. The following decomposition is introduced. Each hexahedron
is decomposed into twenty-four tetrahedra in three space dimensions, each of them with one vertex coinciding with
the center of the cell, one vertex with the center of one of the faces of the cell and the remaining two vertices with
two vertices of the same face. In two space dimensions, each hexahedron is similarly split in eight triangles. A similar
decomposition can be made when the finite volume mesh is composed of tetrahedra.

Let us denote by Th the finite element mesh described above and let K denote a generic tetrahedron of Th. Let Nn

by the number of vertices in Th and let the piecewise linear finite element basis functions based on Th be denoted
by ϕj , j = 1, . . . ,Nn. The piecewise linear approximation f1,h on Th of f is given by the L2-projection of f0,h

defined by:∫

Ω

f1,hϕj dx =
∫

Ω

f0,hϕj dx, ∀j = 1, . . . ,Nn. (2)

With a mass lumping procedure, (2) is a weighted average of the adjacent values of f0,h for each vertex of Th,
as in [2,3] for instance. The projection allows to obtain a piecewise linear approximation f1,h on the tetrahedra. The
approximation f1,h is differentiated to obtain a piecewise constant value ∇f1,h on each K ∈ Th, that is normalized to
give the normal vector n1,h.

The value of the normal vector at the vertices of Th is denoted by n0,h and is given by the projection of the piecewise
constant field n1,h on the vertices of the finite element mesh:∫

Ω

n0,hϕj dx =
∫

Ω

n1,hϕj dx, ∀j = 1, . . . ,Nn. (3)

With a mass lumping procedure, (3) is equivalent to the Clément interpolation rh :H 1(Ω) → P1 defined by rhv(P ) =
1

|ΩP |
∫
ΩP

v(x)dx, where P is a vertex of the finite element mesh and ΩP = ⋃{K ∈ Th: P ∈ K} [4]. Therefore
n0,h := rhn1,h. Consistent values of the normal vector n0,h are thus obtained at the center of the cells of the finite
volume mesh, at the center of the faces and at the vertices.

Theorem 1. For a two-dimensional orthogonal finite volume mesh of squares, the reconstruction of the normal vector
is exact when the initial volume fraction of liquid f is a bilinear function f (x, y) = ax +by + cxy +d , a, b, c, d ∈ R.

Proof. Without loss of generality, the parameter d can be set to zero. The piecewise constant approximation of f

is initially defined as the restriction at the center of the cells. We can check that: (i) the projection of the piecewise
constant approximation at the vertices of the finite element mesh is exact and the exact values of f are recovered at
the vertices; (ii) the projection of the piecewise constant approximation of ∇f on the triangles at the vertices of the
finite element mesh leads to the exact values of ∇f at the center of the cells, the center of the faces and the vertices
of each cell. �
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Error estimates justifying the use of the multi-grids method are presented in the following. Since f ∈ L2(Ω), for
all δ > 0, there exists f ∈ H 3(Ω) such that

‖f − fδ‖L2(Ω) � δ (4)

by density of the Sobolev spaces. Therefore error estimates can be investigated for fδ , the purpose of the following
results being only to describe the additional error introduced by the multi-grids method.

Theorem 2 (Error estimates on the normal vector). There exists a constant C independent of h, such that

‖∇fδ − rh∇f1,h‖L2(Ω) � C
{
h‖fδ‖H 2(Ω) + ‖∇f1,h − ∇f0,h‖L2(Ω) + ‖f0,h − fδ‖H 1(Ω)

}
. (5)

The derivatives of f0,h ∈ P0 in (5) are defined by a centered finite differences scheme. This result states that the
error between the real derivative and the final estimate is bounded by the Clément interpolant plus the error introduced
by the projection between the two grids plus the error due to the original finite volume scheme that produces f0,h.

Proof. The triangle inequality leads to

‖∇fδ − rh∇f1,h‖L2(Ω) � ‖∇fδ − rh∇fδ‖L2(Ω) + ‖rh∇fδ − rh∇f1,h‖L2(Ω). (6)

The Clément interpolant rh is linear and bounded uniformly in h, i.e., there exists Cr = Cr(Ω) independent of h, such
that, for all v ∈ L∞(Ω), ‖rhv‖L2(Ω) � Cr‖v‖L2(Ω). Thus (6) leads to

‖∇fδ − rh∇f1,h‖L2(Ω) � Ch‖fδ‖H 2(Ω) + Cr‖∇f1,h − ∇fδ‖L2(Ω)

� Ch‖fδ‖H 2(Ω) + Cr‖∇f1,h − ∇f0,h‖L2(Ω) + Cr‖∇f0,h − ∇fδ‖L2(Ω)

and relation (5) holds. �
Theorem 3 (Projection error in the two-dimensional orthogonal case). For a two-dimensional orthogonal finite vol-
ume grid (composed of squared cells) and when each cell is decomposed into eight triangles, there exists a constant
C independent of h such that:

‖∇f0,h − ∇f1,h‖L2(Ω) � Ch, ∀h � 1, (7)

where ∇f0,h ∈ P0 is defined by ∇f0,h(Pij ) = 1
2h

(fi+1,j − fi−1,j , fi,j+1 − fi,j−1)
T.

Proof. By density, we can assume that fδ ∈ H 3+ε(Ω), ∀ε > 0. The error on the total domain can be decomposed into
individual errors on each cell Cij . With the above definition of ∇f0,h, we can write:

‖∇f0,h − ∇f1,h‖2
L2(Cij )

=
∑

K⊂Cij

‖∇f0,h − ∇f1,h‖2
L2(K)

.

On each triangle K ⊂ Cij , the difference between both gradients can be expressed explicitly with finite differences
schemes. More precisely, there exists ξK,ij ∈ K ⊂ Cij such that

‖∇f0,h − ∇f1,h‖2
L2(K)

� C

∫

K

h2(∇2fδ(ξK,ij )
)2 dx +O

(
h4). (8)

Eq. (8) leads to ‖∇f0,h − ∇f1,h‖2
L2(Ω)

� Ch2‖fδ‖2
H 3+ε(Ω)

+O(h4) and relation (7) holds. �
4. Numerical results

Numerical results are presented to validate the computation of the normal vector independently of other numerical
approximations. The method has been implemented in the finite volume code TRUCHAS [5].

We consider first a static cylinder of liquid lying in a vacuum along the Oz axis, without any external body or
surface forces. The radius of the cylinder in the (x, y)-plane is 1 m, while the height of the cylinder is 0.3 m. The
finite volume quadrangulation is structured and orthogonal. Convergence results for the error ‖∇fδ − rh∇f1,h‖L2(Ω)
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Fig. 2. Convergence orders for the error on the estimation of the normal vector. Left: the case of a static cylinder. Right: the case of a static spherical
droplet.

Table 1
Comparison of absolute errors for the normal vector for the case of the static spherical droplet

h 1/8 1/16 1/32 1/48

‖∇fδ − rh∇f1,h‖
L2(Ω)

with multi-grids method 0.1484 0.1486 0.1011 0.0798

‖∇fδ − rh∇f1,h‖
L2(Ω)

with original method [11] 0.1607 0.1520 0.1025 0.0818

are based on the values of the normal vector at the center of the cells only and convergence orders are presented in
Fig. 2 (left). We consider then a static spherical droplet of liquid lying in a vacuum, without gravity forces. The radius
of the droplet is 1 m. When the center of the droplet is (0,0,0), the normal vector to the liquid–void interface is given
explicitly by n(x, y, z) = (x y z)T. Convergence orders are presented in Fig. 2 (right).

Fig. 2 shows that, in both cases, the error on the normal vector in the total scheme is approximately of order O(h1/2)

[8]. The error due to the initialization technique [5] is convergent with order 2 and therefore can be neglected. The
order of magnitude of the error on the normal vector approximation with the introduction of the additional multi-grids
technique is compared with the original approximation of the normal vector given by the finite volume scheme and
described in [11]. Results are given in Table 1 for the case of the static spherical droplet.

We conclude that, besides a small difference in absolute errors between the two methods, the multi-grids method
offers a new flexibility for the unified calculation of a consistent value of the normal vector (or other fields) not only
at the center of the cells, but also at the center of the faces and at the vertices, without introducing a significant
contribution to the total error of the scheme. The values of the normal vector at the center of faces and at the vertices
will be useful for the estimation of surface tension effects.
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