Prescribing the scalar curvature on three dimensional spheres

Wael Abdelhedi
Département de mathématiques, faculté des sciences de Sfax, route Soukra, 3018 Sfax, Tunisia

Received 3 March 2006; accepted after revision 5 September 2006

Presented by Thierry Aubin

Abstract

By topological arguments, we set sufficient hypotheses for a given function K, on the unit sphere $\left(S^{3}, g\right)$, to be the scalar curvature of a metric conformal to g. To cite this article: W. Abdelhedi, C. R. Acad. Sci. Paris, Ser. I 343 (2006). © 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Courbure scalaire prescrite sur la sphère de dimension trois. Par des arguments topologiques, on met en évidence des hypothèses suffisantes pour qu'une fonction K, donnée sur la sphère $\left(S^{3}, g\right)$, soit la courbure scalaire d'une métrique conforme à g. Pour citer cet article : W. Abdelhedi, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and the main results

Let $\left(S^{3}, g\right)$ be the standard 3-sphere equipped with the standard metric. Let K be a C^{2} positive function on S^{3}. We study the problem:

$$
\left\{\begin{array}{l}
-8 \Delta_{g} u+6 u=K(x) u^{5} \tag{1}\\
u>0 \text { on } S^{3}
\end{array}\right.
$$

Under some conditions on K, we prove that this equation has at least one solution.
In this paper, we give a contribution in the spirit of Aubin and Bahri [1] and Bahri and Coron [3], using topology and Bahri's theory of critical points at infinity (see [2]). The first result here (Theorem 1.1) is that under one qualitative assumption on some of the critical points of K (assumption $\left(\mathrm{C}_{1}\right)$) and one topological assumption on the remaining critical points of K (assumption $\left(\mathrm{C}_{2}\right)$), then there is a positive solution of (1). This result generalizes, in particular, a result of Bahri and Coron [3] where topological contractibility assumptions on all the critical points of K are assumed (see Corollary 1.2). In Remark 1.5, we describe a situation in which Theorem 1.1 applies, but not Bahri-Coron's.

In order to state our results, we need to fix some notations and assumptions that we are using.

[^0]Throughout this Note, we assume that K has only non-degenerate critical points $y_{0}, y_{1}, \ldots, y_{h}$ such that $\Delta K\left(y_{i}\right) \neq 0$ for each $i=0, \ldots, h$ and $K\left(y_{0}\right) \geqslant K\left(y_{1}\right) \geqslant \cdots \geqslant K\left(y_{h}\right)$. Each y_{i} is assumed to be of index ind $\left(K, y_{i}\right)=$ $3-k_{i}$. Let $I^{+}=\left\{y_{i} \mid-\Delta K\left(y_{i}\right)>0\right\}$.

Let Z be a pseudo-gradient of K of Morse-Smale type (that is the intersection of stable and unstable manifolds of the critical points of K are transverse). We assume that

$$
W_{s}\left(y_{i}\right) \cap W_{u}\left(y_{j}\right)=\emptyset, \quad \text { for each } y_{i} \in I^{+} \text {and } y_{j} \notin I^{+},
$$

where $W_{s}\left(y_{i}\right)$ is the stable manifold of y_{i} and $W_{u}\left(y_{j}\right)$ is the unstable manifold of y_{j} for Z. For each $0 \leqslant \ell \leqslant h$, we define $X_{\ell}=\bigcup_{\substack{0 \leqslant j \leqslant \ell \\ y_{j} \in I^{+}}} \bar{W}_{s}\left(y_{j}\right)$. We then have:

Theorem 1.1. Assume that there exist $\ell \in\{0, \ldots, h\}$ satisfying the following conditions:
($\left.\mathrm{C}_{1}\right) K\left(y_{j}\right)^{-1 / 2}>K\left(y_{0}\right)^{-1 / 2}+K\left(y_{\ell}\right)^{-1 / 2}$ for $j \in\{\ell+1, \ldots, h\}$ and $y_{j} \in I^{+}$.
$\left(\mathrm{C}_{2}\right) X_{\ell}$ is not contractible. We denote by m the dimension of the first non trivial reduced homology group.
Then problem (1) admits a solution.
Corollary 1.2. If $\sum_{y_{i} \in I^{+}}(-1)^{3-\operatorname{ind}\left(k, y_{i}\right)} \neq 1$, then (1) has a solution.
Corollary 1.3. The solution obtained in Theorem 1.1 has an augmented Morse index $\geqslant m$.
To state our next result, we need to introduce the following assumptions:
$\left(\mathrm{C}_{3}\right)$ There exist $F^{+} \subset I^{+}$such that $X=\bigcup_{y_{i} \in F^{+}} \bar{W}_{s}\left(y_{i}\right)$ is a stratified set in dimension $k \geqslant 1$ without boundary (in the topological sense, i.e. $X \in \mathcal{S}_{k}\left(S^{3}\right)$, the group of chains of dimension k and $\partial X=0$).
$\left(\mathrm{C}_{4}\right)$ For all $y \in I^{+} \backslash F^{+}$we have $\operatorname{ind}\left(K, y_{j}\right) \notin\{3-k, 3-(k+1)\}$.
We then have the following:
Theorem 1.4. Under the assumptions $\left(\mathrm{C}_{3}\right)$ and $\left(\mathrm{C}_{4}\right)$, the problem (1) admits a solution.
Remark 1.5. Here, we give a situation where the result of Corollary 1.2 does not give a solution to problem (1) but by Theorem 1.1 or Theorem 1.4, we derive that problem (1) admits a solution.

For this, let $K: S^{3} \rightarrow \mathbb{R}$ be a function such that $I^{+}=\left\{y_{0}, y_{1}, y_{2}\right\}$ with, $K\left(y_{0}\right) \geqslant K\left(y_{1}\right) \geqslant K\left(y_{2}\right)$, ind $\left(K, y_{0}\right)=3$, $\operatorname{ind}\left(K, y_{1}\right) \neq \operatorname{ind}\left(K, y_{2}\right) \in\{1,2\}$ and $K(y)<K\left(y_{1}\right)$ for any critical point y of K which is not in I^{+}. It is easy to see that

$$
\sum_{y_{j} \in I^{+}}(-1)^{3-\operatorname{ind}\left(K, y_{j}\right)}=1 .
$$

From another part, $X_{1}=\bar{W}_{s}\left(y_{1}\right)=W_{s}\left(y_{1}\right) \cup\left\{y_{0}\right\}$ is a stratified set in dimension $\geqslant 1$, without boundary. Thus, X_{1} is not contractible. We distinguish two cases:
case 1: If $K\left(y_{2}\right)^{-1 / 2}>K\left(y_{0}\right)^{-1 / 2}+K\left(y_{1}\right)^{-1 / 2}$, we deduce from Theorem 1.1 that problem (1) has a solution. case 2: If $i\left(y_{1}\right)=1$ and $i\left(y_{2}\right)=2$, by Theorem 1.4 we derive that (1) has a solution.

2. Proofs of results

Problem (1) is equivalent to finding the critical points of the following function:

$$
J(u)=\frac{1}{\left(\int_{S^{3}} K(x) u^{6} \mathrm{~d} v_{g}\right)^{1 / 3}}, \quad u \in \Sigma^{+},
$$

where $\Sigma^{+}=\{u \in \Sigma, u \geqslant 0\}$ and $\Sigma=\left\{u \in H^{1}\left(S^{3}\right),|u|_{H^{1}}^{2}=1\right\}$. For $a \in S^{3}, \lambda>0$, let:

$$
\delta_{(a, \lambda)}(x)=c_{0}\left(\frac{\lambda}{\left(\lambda^{2}+1\right)+\left(\lambda^{2}-1\right) \cos d(a, x)}\right)^{1 / 2}
$$

where $\delta_{(a, \lambda)}(x)$ is a solution of the Yamabe problem on S^{3}.
Proposition 2.1. (See Lemma 7 of [3]) Assume that J has no critical points in Σ^{+}, then the only critical points at infinity for J are $\delta\left(y_{i}, \infty\right)$ such that $y_{i} \in I^{+}$, where

$$
I^{+}=\left\{y \in S^{3} \mid \nabla K(y)=0 \text { and }-\Delta K(y)>0\right\}
$$

The level of such critical point at infinity is $S^{2 / 3} K\left(y_{i}\right)^{-1 / 3}$, where $S=\int_{S^{3}} \delta^{6} \mathrm{~d} v$.
Moreover, the Morse index of the critical point at infinity $\delta\left(y_{i}, \infty\right)$ is given by $i\left(y_{i}\right)_{\infty}=3-\operatorname{ind}\left(K, y_{i}\right)$.
Proof of Theorem 1.1. Arguing by contradiction, we assume that J has no critical points in Σ^{+}. Let $C_{\infty}\left(y_{0}, y_{\ell}\right)=$ $S^{2 / 3}\left(\frac{1}{K\left(y_{0}\right)^{1 / 2}}+\frac{1}{K\left(y_{\ell}\right)^{1 / 2}}\right)^{2 / 3}$. It follows from the result of Proposition 2.1 and the assumption $\left(\mathrm{C}_{1}\right)$ of Theorem 1.1 that, the only critical points at infinity of J under the level $c_{1}=C_{\infty}\left(y_{0}, y_{\ell}\right)+\varepsilon$, for ε small enough, are $\delta\left(y_{j}, \infty\right)$ where $y_{j} \in I^{+}$and $j \in\{0, \ldots, \ell\}$. In the neighborhood of such critical points at infinity, we have:

$$
J\left(\alpha \delta_{(a, \lambda)}+v\right)=\frac{S^{2 / 3}}{K(a)^{1 / 3}}\left(1-\frac{\Delta K\left(y_{j}\right)}{\lambda^{2}}\right)+|V|^{2} \quad(\text { see }[1] \text { p. 534) }
$$

In order to define our deformations, we can work as if V was zero. The deformation will extend with the same properties, to a neighborhood of zero in the V part. Thus, the unstable manifolds at infinity for the vector field $(-\partial J)$ of such critical points at infinity $W_{u}\left(y_{j}\right)_{\infty}$ can be described as the product of $W_{s}\left(y_{j}\right)$ (for a decreasing pseudo-gradient of K) by [A, ∞ [domain of the variable λ, for some positive number A large enough (see [1] p. 535). Since J has no critical points, the set $J_{c_{1}}=\left\{u \in \Sigma^{+} \mid J(u) \leqslant c_{1}\right\}$ retract by deformation onto $\left(X_{\ell}\right)_{\infty}=\bigcup_{0 \leqslant j \leqslant \ell} \bar{W}_{u}\left(y_{j}\right)_{\infty}$ which can be parameterized by $X_{\ell} \times[A, \infty[$.

Observe that by assumption $\left(\mathrm{C}_{2}\right)$ of Theorem $1.1\left(X_{\ell}\right)_{\infty}$ is not a contractible set. Now, we prove that $\left(X_{\ell}\right)_{\infty}$ is contractible in $J_{c_{1}}$. Indeed, let:

$$
\begin{aligned}
f:[0,1] \times\left(X_{\ell}\right)_{\infty} & \longrightarrow \Sigma^{+} \\
(t, x, \lambda) & \longmapsto \frac{t \delta_{\left(y_{0}, \lambda\right)}+(1-t) \delta_{(x, \lambda)}}{\left|t \delta_{\left(y_{0}, \lambda\right)}+(1-t) \delta_{(x, \lambda)}\right|_{H^{1}}}
\end{aligned}
$$

For $t=0, f(0, x, \lambda)=\frac{1}{S} \delta_{(x, \lambda)} \in X_{\infty}, f$ is continuous and $f(1, x, \lambda)=\frac{1}{S} \delta_{\left(y_{0}, \lambda\right)}$. Let $a_{1}, a_{2} \in S^{3}, \alpha_{1}, \alpha_{2}>0$ and λ large enough. For $u=\alpha_{1} \delta_{\left(a_{1}, \lambda\right)}+\alpha_{2} \delta_{\left(a_{2}, \lambda\right)}$, we have:

$$
J\left(\frac{u}{|u|_{H^{1}}}\right) \leqslant\left(S\left(\frac{1}{K\left(a_{1}\right)^{1 / 2}}+\frac{1}{K\left(a_{2}\right)^{1 / 2}}\right)\right)^{2 / 3}(1+\mathrm{o}(1))
$$

where $\mathrm{o}(1) \rightarrow 0$ when $\lambda \rightarrow+\infty$ independently of t and x. Hence,

$$
J(f(t, x, \lambda)) \leqslant\left(S\left(\frac{1}{K\left(y_{0}\right)^{1 / 2}}+\frac{1}{K(x)^{1 / 2}}\right)\right)^{2 / 3}(1+\mathrm{o}(1))
$$

We claim that $K(x) \geqslant K\left(y_{\ell}\right)$ for any $x \in X_{\ell}$. Indeed, for each $x \in W_{s}\left(y_{j}\right)$ we have $\eta(s, x) \rightarrow y_{j}$ when $s \rightarrow+\infty$, where $\eta(s, x)$ is the decreasing flow of Z. Thus, $K(x) \geqslant K\left(y_{j}\right)$. Furthermore, for $0 \leqslant j \leqslant \ell$, we have $K\left(y_{j}\right) \geqslant$ $K\left(y_{\ell}\right)$ (since $K\left(y_{0}\right) \geqslant K\left(y_{1}\right) \geqslant \cdots \geqslant K\left(y_{h}\right)$). Hence, our claim follows and we derive that $J(f(t, x, \lambda))<c_{1}$ for any $(t, x, \lambda) \in[0,1] \times X_{\ell} \times[A, \infty[$.

Thus, the contraction f is performed under the level c_{1}. We deduce that, $\left(X_{\ell}\right)_{\infty}$ is contractible in $J_{c_{1}}$, which retracts by deformation on $\left(X_{\ell}\right)_{\infty}$, therefore $\left(X_{\ell}\right)_{\infty}$ is contractible leading to the contractibility of X_{ℓ} which is a contradiction. The proof of Theorem 1.1 is thereby completed.

Proof of Corollary 1.2. We recall that K has only non degenerate critical points $y_{0}, y_{1}, \ldots, y_{h}$ such that $K\left(y_{0}\right) \geqslant$ $K\left(y_{1}\right) \geqslant \cdots \geqslant K\left(y_{h}\right)$. For $\ell=h$, we have $X_{h}=\bigcup_{y_{j} \in I^{+}} \bar{W}_{s}\left(y_{j}\right)$ then $\chi\left(X_{h}\right)=\sum_{y_{j} \in I^{+}}(-1)^{3-\text { ind } b\left(k, y_{i}\right)}$, where
$\chi\left(X_{h}\right)$ is the Euler-Poincaré characteristic of X_{h} (recall that for a stratified set M in dimension l, the Euler-Poincaré characterization of M is given by $\chi(M)=\sum_{i}(-1)^{i} \operatorname{dim} H_{i}(M)$, where $H_{i}(M)$ is the homology group in dimension i associated to M). Under the assumption of Corollary 1.2, we derive that X_{h} is not contractible. Hence, the result follows from Theorem 1.1.

Proof of Theorem 1.4. Let $X=\bigcup_{y_{i} \in F^{+}} \overline{W_{s}}\left(y_{i}\right)$. By the assumption $\left(\mathrm{C}_{3}\right)$ of Theorem 1.4, X is a stratified set in dimension $k \geqslant 1$ without boundary. For λ large enough, we define the following set, $C_{\lambda}\left(y_{0}, X\right)=\left\{\alpha \delta_{y_{0}, \lambda}+(1-\alpha) \delta_{x, \lambda}\right.$, $x \in X$ and $\alpha \in[0,1]\}$.
$C_{\lambda}\left(y_{0}, X\right)$ is a contractible manifold in dimension $k+1$, that is its singularities arise in dimension $k-1$ and lower. Let $X_{\infty}=\bigcup_{y_{i} \in F^{+}} \overline{W_{u}}\left(y_{i}\right)_{\infty}$.

We argue by contradiction, we suppose that J has no critical points in Σ^{+}. Thus, $C_{\lambda}\left(y_{0}, X\right)$ retract by deformation on $\bigcup_{y \in H} \bar{W}_{u}(y)_{\infty}$, where $H=\left\{y \in I^{+} \mid C_{\lambda}\left(y_{0}, X\right) \cap W_{s}(y)_{\infty} \neq \emptyset\right\}$.

Since $C_{\lambda}\left(y_{0}, X\right)$ is a manifold in dimension $k+1$, this manifold can be assumed to avoid the unstable manifold of every critical point at infinity $\delta_{(y, \infty)}$ of Morse index $>k+1$, i.e., $\operatorname{ind}(K, y)<3-(k+1)$. Thus, $H \subset\left\{y \in F^{+} \mid\right.$ $\operatorname{ind}(K, y) \geqslant 3-k\}$. More precisely, $C_{\lambda}\left(y_{0}, X\right)$ retract by deformation on $X_{\infty} \cup D_{\infty}$, where $D_{\infty}=\bigcup_{y \in D} W_{u}(y)_{\infty}$ and $D=\left\{y \in H \backslash F^{+}\right\}$.

Using the assumption $\left(\mathrm{C}_{4}\right)$ of Theorem 1.4 , we derive that $\operatorname{ind}(K, y)>3-k$ for each $y \in D$. Thus, the Morse index at infinity of the critical point at infinity $\tilde{\delta}_{(y, \infty)}, y \in D$ is $\leqslant k-1$, and therefore D_{∞} is a stratified set of dimension at most $k-1$. Since $C_{\lambda}\left(y_{0}, X\right)$ is a contractible set, then $H_{k}\left(X_{\infty} \cup D_{\infty}\right)=0$ for all $* \in \mathbb{N}^{*}$. Using the exact homology sequence of ($X_{\infty} \cup D_{\infty}, X_{\infty}$), we have:

$$
\cdots \longrightarrow H_{k+1}\left(X_{\infty} \cup D_{\infty}\right) \longrightarrow H_{k+1}\left(X_{\infty} \cup D_{\infty}, X_{\infty}\right) \longrightarrow H_{k}\left(X_{\infty}\right) \longrightarrow H_{k}\left(X_{\infty} \cup D_{\infty}\right) \longrightarrow \cdots
$$

Since $H_{*}\left(X_{\infty} \cup D_{\infty}\right)=0$ for all $* \in \mathbb{N}^{*}$, then $H_{k}\left(X_{\infty}\right)=H_{k+1}\left(X_{\infty} \cup D_{\infty}, X_{\infty}\right)$.
In addition, $\left(X_{\infty} \cup D_{\infty}, X_{\infty}\right)$ is a stratified set of dimension at most k, so $H_{k+1}\left(X_{\infty} \cup D_{\infty}, X_{\infty}\right)=0$. Thus, $H_{k}\left(X_{\infty}\right)=0$ and therefore $H_{k}(X)=0$ which is in contradiction to the assumption $\left(\mathrm{C}_{4}\right)$ of the theorem. Hence our result follows.

References

[1] T. Aubin, A. Bahri, Méthode de topologie algébrique pour le problème de la courbure scalaire prescrite, J. Math. Pures Appl. 76 (1997) 525-549.
[2] A. Bahri, Critical Point at Infinity in Some Variational Problem, Pitman Res. Notes Math. Ser., vol. 182, Longman Sci. Tech., Harlow, 1989.
[3] A. Bahri, J.M. Coron, The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal. 95 (1991) 106-172.

[^0]: E-mail address: Wael_hed@yahoo.fr (W. Abdelhedi).

