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Abstract

We announce a first series of new results and techniques extending the scope of applications of minimal hypersurfaces in scalar
curvature geometry. For instance, the restriction to dimensions � 7 which arises from subtle analytic problems in higher dimensions
is entirely removed. To cite this article: J. Lohkamp, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Courbure scalaire positive en dimension � 8. Nous annonçons une suite des résultats et techniques nouveaux qui permit
d’étendre les domaines d’application des hypersurfaces minimaux en géométrie de courbure scalaire. Par exemple, la restriction
aux dimensions � 7 qui emerge d’un problème analytique subtil en dimensions plus grandes est éliminée complètement. Pour citer
cet article : J. Lohkamp, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of results

Scalar curvature is presently studied most successfully in the case where the underlying manifold is Spin: surgery
techniques and the index theorem provide a rather direct and interactive link to topology (cf. [2,3]).

However getting a more geometric insight, and handling the general case including Non-Spin manifolds, requires
another approach: in the late 1970s minimal hypersurfaces within the manifold under consideration (cf. [9,10]) turned
out to be a good candidate: they have the remarkable property to gather efficiently positive scalar curvature from the
ambient manifold while the dimension declines. This can be iterated until one reaches a lower dimensional geome-
try/topology that is well understood (for instance that of surfaces); then one can analyze the induced metric to derive
information for the original scalar curvature geometry.

Being based on geometric measure (and regularity) theory the minimal hypersurface approach was soon bound to
run into trouble. Most seriously the appearance of still hardly understood singularities of area minimizing hypersur-
faces in dimensions � 8 made the study of scalar curvature in higher dimensions basically impracticable.
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In this set of papers our main focus will be on the development of some natural techniques that allow us to bypass
this problem – by some kind of coarse regularization results – without loosing the information encoded in the singular
hypersurfaces.

Conceptionally, all the new tools are designed to assemble data like minimal hypersurface + functions solving
certain elliptic equations + further minimal submanifolds to canonical objects which obey compactness theorems
arising from combinations of geometric and elliptic compactness results. Then one can consider extremal objects
which are usually area minimizing cones and reduce the problems by induction.

Our first theorem (derived in such a way) says: after deleting a carefully chosen neighborhood of the singular set
within the area minimizer and doubling the resulting manifold one can show that this is a sufficiently good substitute
for the original hypersurface.

In order to state it precisely we consider a closed n-dimensional Riemannian manifold (Mn,g), n � 8, with positive
scalar curvature (scal > 0), a given homology class α ∈ Hn−1(M,Z).

Classical geometric measure theory provides us with an area minimizing hypersurface Hn−1 in (Mn,g) repre-
senting α which in general (and of course we assume this is the case) contains a compact singular set Σn−8 of
Hausdorff-dimension � n − 8, ∅ �= Σn−8 ⊂ Hn−1. Then we have cf. [1,4]:

Theorem 1. For any ε > 0 there is a neighborhood Vε ⊂ ε-neighborhood of Σn−8 in Hn−1 such that the smooth
doubling Hn−1 \ Vε ∪∼ Hn−1 \ Vε , where ∼ means gluing along ∂Vε , admits a smooth metric gε with scal(gε) > 0.

For the proof the codimension of Σn−8 actually used is not 7 but only > 2: the geometric outcome could therefore
be understood as a generalization of the scal > 0-preserving codim � 3-surgeries in [2] and [11] but not along a
smooth submanifold within a manifold with scal > 0 but along Σn−8 in a space whose first eigenvalue for (a scaling
invariant refinement of) the conformal Laplacian is positive.

We also set up some more analytic regularization technique which allows us in several situations to assume that
the singular minimal hypersurface is actually regular. Specifically we introduce parametric minimal hypersurfaces
with obstacles as a construction tool in scalar curvature geometry. Formally, take two (for now) smooth compact
and cobordant but not necessarily connected submanifolds Mm

1 ,Mm
2 and the cobordism Wm+1 equipped with some

Riemannian metric.

Definition. An area minimizing current T in Wm+1 homologous to Mm
1 (and thus to Mm

2 ) is called an area minimizer
with obstacles Mm

1 and Mm
2 .

The context is as follows: start with a free minimizer or a minimizer with already some obstacles. Then the obstacles
can be enhanced such that the new minimizer with obstacle is quite regular (cf. [5]):

Theorem 2. Let V n−1 be the unique area minimizer with obstacles and within some homology class of some compact
orientable (Mn,gM).

Assume that all obstacles are in contact on one-side of V n−1, then we can place additional obstacles on the same
side and find a new C1-smooth area minimizer Vn−1 arbitrarily near to V n−1 in Hausdorff-topology within the same
homology class with both classes of objects as obstacles.

After some additional smoothing we get a smooth hypersurface (with almost minimal volume) with positive mean
curvature arbitrarily close to the original singular minimizer. Theorem 2 (which also enters in the proof of Theorem 1)
enhances the versatility of the approach considerably since it allows us to combine minimal hypersurfaces techniques
with local deformations, surgeries etc.

The techniques developed in the proofs can probably be modified and/or extended to handle the question whether
a singular minimal hypersurface could be perturbed into a smooth one at least in the so-called strictly stable case
(although this does not mean that the answer should be affirmative). However, this also implies that such a (speculative)
regularization result would not provide a more direct approach.

The main application of Theorem 1 (partially in junction with Theorem 2) we want to state in this announcement
is the extension of the obstruction theory for scal > 0 on large manifolds to a broader class of spaces and to arbitrary
dimensions:
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In particular the non-existence of scal > 0-metrics on enlargeable manifolds (e.g. T n #Nn) [6] or the incompati-
bility of largeness in a metric sense with positive scalar curvature and more generally lower scalar curvature bounds
which can be studied using e.g. the brane action which serves as a substitute for the area functional.

For non-compact manifolds one gets results for sufficiently tame ends, i.e. product like or asymptotically flat resp.
hyperbolic ends. In particular, we can use this result (and some new deformation tools) to derive short geometric proofs
of the general positive mass conjectures in every dimension [7] and [8] which extend to more advanced versions (e.g.
with certain non-asymptotically flat complete ends) and to higher dimensional Penrose inequalities.

2. Sketch of some arguments

We mainly comment on Theorem 1: the argument can be split into some main steps although these are interlaced
since we use induction arguments in many places which presume the corresponding global results in lower dimensions.

First one checks that from the area minimizing property

λ0 := inf
f �≡0, smooth, suppf ⊂H\Σ

∫
H\Σ |∇f |2 + n−2

4(n−1)
scalH f 2

∫
H\Σ |A|2 · f 2

> 1/4

and we can find a smooth function positive (although possibly not-integrable) function u0 on H \ Σ with

−
u0 + n − 2

4(n − 1)
scalH u0 = λ0 · |A|2 · u0.

There is an essential difference to the classical case: the appearance of |A|2 on the right hand side will make parts of
the problem scaling invariant. Different from the case of a closed manifold there will usually be many solutions for
this problem and they will not depend smoothly on varying data. However in our case we choose particular solutions
which are in a sense minimal. This is a property inherited by the tangent cones and due to that scaling invariance we
find the same type of equation and solutions on the cones. The point is that these solutions have sort of an invariance
along the cone direction and thus they can be understood by induction. This analytic scheme is built up in [4].

The conformally deformed metric u
4/n−2
0 ·gH (gH is the metric induced on H from (Mn,g)) has scal > 0 (actually

scal � 0 but one can deform it to scal > 0) as in the classical case:

−4(n − 1)/(n − 2) · �u0 + scalgH
· u0 = scal

u
4/n−2
0 ·gH

· un+2/n−2
0 .

The new interesting outcome is that close to points p ∈ Σ the deformed metric still looks like a cone: (C, g̃) is
isometric to any of copy scaled around 0 and can be reparametrized as c(ω)4/n−2 · gR + r2 · g∂B1(0)∩C .

A delicate point is that this closeness depends discontinuously on the base point p ∈ Σ . But at least there is a
radius for each p from that on (downwards) the balls around p belong to a well-controlled family (of subsets) of
cone geometries. The fact that the ‘Hausdorff codimension’ of Σ is > 2 enters most visibly in the second stage of the
deformation, which could be regarded as stratified surgery keeping scal > 0 along an enhanced singular set.

We start with (actually sums of inductively constructed bunches of) truncated standard Green’s functions (i.e. they
look like Green’s functions in the interior of a ball (leaving scal > 0) and become constant near the boundary) defined
on families of sufficiently small balls covering Σ .

The choice of radii is based on the accuracy of approximation H by tangent cones in a given point in Σ . We select a
covering of Σ with upper bounded intersection number c(n) (depending only on the dimension): this allows us to see
that the sum of all negative contributions of the cut-off regions of our truncated Green’s functions is still compensated
pointwise by the positive scalar curvature on H .

Now when we use such a sum to deform the metric close to Σ we also find that a suitable choice of coefficients
leads to a barrier deflecting area minimizers within H homologically equivalent to a boundary of a neighborhood of Σ

away from a small region around Σ .
Finally, using such a barrier and Theorem 2 we have a smooth (n − 2)-dimensional hypersurface Nn−2 with pos-

itive mean curvature homologically equivalent to that boundary and arbitrarily close to Σn−8. Now a non-conformal
deformation transforms a small one sided tube of Nn−2 into a totally geodesic border (and additionally gives some
extra scal > 0). Gluing this with a mirrored copy completes the argument.



588 J. Lohkamp / C. R. Acad. Sci. Paris, Ser. I 343 (2006) 585–588
References

[1] U. Christ, J. Lohkamp, Singular minimal hypersurfaces and scalar curvature, Preprint.
[2] M. Gromov, B. Lawson, The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980) 423–434.
[3] M. Gromov, B. Lawson, Spin and scalar curvature in the presence of a fundamental group, Ann. of Math. 111 (1980) 209–230.
[4] J. Lohkamp, Inductive analysis on singular minimal hypersurfaces, Preprint.
[5] J. Lohkamp, Smoothings of parametric hypersurfaces with obstacles, Preprint.
[6] J. Lohkamp, Large manifolds and minimal hypersurfaces, in preparation.
[7] J. Lohkamp, The higher dimensional positive mass conjecture I, Preprint.
[8] J. Lohkamp, The higher dimensional positive mass conjecture II, in preparation.
[9] R. Schoen, S.T. Yau, Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar

curvature, Ann. of Math. 110 (1979) 127–142.
[10] R. Schoen, S.T. Yau, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65 (1979) 45–76.
[11] R. Schoen, S.T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979) 159–183.


