
C. R. Acad. Sci. Paris, Ser. I 343 (2006) 565–568
http://france.elsevier.com/direct/CRASS1/

Algebra

A universal deformation ring which is not a complete
intersection ring

Jakub Byszewski

Department of Mathematics, Utrecht University, P.O. Box 80010, NL-3508 TA Utrecht, The Netherlands

Received 17 June 2006; accepted 19 September 2006

Available online 27 October 2006

Presented by Jean-Pierre Serre

Abstract

Bleher and Chinburg recently used modular representation theory to produce an example of a linear representation of a finite
group whose universal deformation ring is not a complete intersection ring. We prove this by using only elementary cohomological
obstruction calculus. To cite this article: J. Byszewski, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un anneau de déformation qui n’est pas d’intersection complète. Bleher et Chinburg ont récemment utilisé la théorie des
réprésentation modulaires pour construire une représentation d’un groupe fini ayant un anneau de déformations universel qui n’est
pas d’intersection complète. On redémontre ce résultat en n’utilisant que la théorie cohomologique des obstructions. Pour citer cet
article : J. Byszewski, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let k be a perfect field of characteristic 2 and let W denote the ring of Witt vectors of k. Consider the (unique)
indecomposable representation of S4 of dimension 2. In Theorem 3.1 we prove that its universal deformation ring is
W [[t]]/(t2,2t). This gives an example of a universal deformation ring which is not a complete intersection ring. The
proof of Theorem 3.1 uses only cohomological obstruction calculus, the crucial part being an explicit computation of
group cohomology of the adjoint representation (cf. Lemma 2.4). Another proof using modular representation theory
is due to Bleher and Chinburg [1].

1. A representation of S4 in characteristic 2

Let V be a representation of S4 defined by the following group homomorphisms

S4 → S3
∼−→ GL2(F2) ↪→ GL2(k)

∼−→ Autk(V ). (1)
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The map S4 → S3 is a quotient map and the kernel is the (unique) normal subgroup K of S4 of order 4. It is isomorphic
to the Klein four group. For computational purposes we give an explicit description of this representation. We write
S4 in terms of generators and relations

S4 =
〈
u,v, r, s

∣∣∣ u2 = v2 = r3 = s2 = 1, uv = vu, srs = r−1

sus = v, svs = u, rur−1 = v, rvr−1 = uv

〉
. (2)

Whenever we wish to interpret elements of S4 as permutations on four letters, we choose the following identifications:
u = (12)(34), v = (14)(23), r = (123), s = (13). The action of S4 on V can be given by τ :S4 → GL2(k) with

τ(u) = τ(v) =
(

1 0
0 1

)
, τ (r) =

(
0 1
1 1

)
, τ (s) =

(
0 1
1 0

)
. (3)

2. Computing cohomology groups

Let M denote the adjoint representation of V , i.e., M = M2(k) with the action of S4 given by conjugation
A �→ τ(g)Aτ(g)−1. One of our aims is to compute the group cohomology H1(S4,M) and H2(S4,M), the first one
being the tangent space to the deformation functor associated to V , the second one containing the obstructions.
We identify S3 with a subgroup of S4 generated by r and s. Then V and M can also be regarded as S3-modules.

Lemma 2.1. Hp(S3,M) = 0 for p � 1.

Proof. One can regard S3 as a split extension of Z/2Z by Z/3Z. The cohomology groups Hp(Z/3Z,M) are annihi-
lated by both two and three, hence are trivial. Thus the short exact sequence

1 → Z/3Z → S3 → Z/2Z → 1

induces inflation-restriction sequences (cf. [4, Chapter 7]) in every dimension p � 1

0 → Hp
(
Z/2Z,MZ/3Z) ∼−→ Hp(S3,M)

Res−−→ 0.

The action of Z/3Z on M is given explicitly by (3), and therefore the computation of MZ/3Z amounts to solv-
ing a system of linear equations. Doing so yields MZ/3Z = {(

a b
b a+b

)}
. The action of Z/2Z on MZ/3Z is given

by
(

a b
b a+b

) �→ (
a+b b
b a

)
. An easy computation using an explicit description of cohomology of cyclic groups yields

Hp(Z/2Z,MZ/3Z) = 0 for p � 1, which finishes the proof. �
We proceed to calculate H1(S4,M) and H2(S4,M). The group S3 acts on Hq(K,M) by

(gη)(s1, . . . , sq) = g
(
η
(
g−1s1g, . . . , g−1sqg

))
,

where η is a q-cocycle representing a cohomology class in Hq(K,M). We consider the cohomology groups
Hp(S3,Hq(K,M)). The short exact sequence 1 → K → S4 → S3 → 1 induces a Hochschild–Serre spectral sequence
Hp(S3,Hq(K,M)) ⇒ Hp+q(S4,M). Its 0th row is Hp(S3,H0(K,M)) = Hp(S3,M) = 0 for p � 1 by Lemma 2.1.
The group H1(K,M) is just the group Hom(K,M) with the action of S3 given by (gϕ)(x) = gϕ(g−1xg). The action
of S3 by conjugation on K is given by s−1us = v, s−1vs = u, s−1uvs = uv; r−1ur = uv, r−1vr = u, r−1uvr = v.
Reasoning as in Lemma 2.1, we obtain inflation maps inducing isomorphisms

Hp
(
Z/2Z,H1(K,M)Z/3Z) ∼−→ Hp

(
S3,H1(K,M)

)
, p � 1. (4)

Lemma 2.2. dimk H1(K,M)S3 = 1, Hp(S3,H1(K,M)) = 0 for p � 1.

Proof. This computation again amounts to solving linear equations. A homomorphism ϕ :K → M is invariant under
the action of Z/3Z if and only if rϕ = ϕ. This is equivalent ϕ(u) = (rϕ)(u) = rϕ(uv) and ϕ(v) = (rϕ)(v) = rϕ(u).
One easily checks that this is equivalent to ϕ(u) = (

a b
a+b a

)
, ϕ(v) = (

b a+b
a b

)
for some a, b ∈ k. The action of Z/2Z on

H1(K,M)Z/3Z is given by (sϕ)(u) = sϕ(v) = (
b a

a+b b

)
, (sϕ)(v) = sϕ(u) = (

a a+b
b a

)
. Direct computation shows that

Hp(Z/2Z,H1(K,M)Z/3Z) = 0 for p � 1 and that ϕ is invariant under the action of Z/2Z if and only if a = b. Hence
H1(K,M)S3 is one dimensional. The claim follows from isomorphisms (4). �
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The spectral sequence takes on the following form:

H0(S3,H2(K,M)) H1(S3,H2(K,M)) H2(S3,H2(K,M)) . . .

H0(S3,H1(K,M)) 0 0 . . .

H0(S3,H0(K,M)) 0 0 0 . . .

where the boxed elements stabilize (i.e., do not change when passing to higher-step spectral sequences). This shows
that the maps

H1(S4,M) → H1(K,M)S3 , H2(S4,M) → H2(K,M)S3 (5)

induced by restriction maps are in fact isomorphisms.

Lemma 2.3. Let K be the Klein four group, M a vector space over F2 with trivial action of K . Denote the elements
of K by 1, u, v, uv. Then:

(i) The map

H2(K,M) � [η] �→ (
η(u,u) − η(0,0), η(v, v) − η(0,0), η(uv,uv) − η(0,0)

) ∈ M3

is an isomorphism.
(ii) Every cohomology class in H2(K,M) contains precisely one cocycle η such that η(0, k) = η(k,0) = η(u, v) = 0

for every k ∈ K .

Proof. (i) This is a direct consequence of the 2-cocycle equation. Details are omitted.
(ii) For any cocycle η in a given cohomology class, one checks that the cocycle η′ = η + ∂f with f :K → M such

that f (0) = η(0,0), f (u) = f (v) = 0, f (uv) = η(u, v) satisfies η′(0,0) = η′(u, v) = 0 and the 2-cocycle equation
implies that we also have η′(0, k) = η′(k,0) = 0 for any k ∈ K . Uniqueness results from the fact that any coboundary
∂f such that ∂f (0,0) = ∂f (u, v) = 0 is identically zero. �
Lemma 2.4. dimk H1(S4,M) = 1, dimk H2(S4,M) = 2.

Proof. The first claim is a consequence of Lemma 2.2 and isomorphisms (5). For the second claim, choose [η] ∈
H2(K,M) and write x = η(u,u), y = η(v, v), z = η(uv,uv). By Lemma 2.3(i), [η] is invariant under the action of
S3 if and only if sy = x, sx = y, sz = z, rz = x, rx = y, ry = z. This is equivalent to z = r2x, y = rx, srx = x. One
easily checks that the space of solutions to these equations is two dimensional. �
3. Computation of the universal deformation ring

We shall consider deformations of the representation τ :S4 → GL2(k). Denote by CW the category of Artinian local
W -algebras with residue field k and let D :CW → Sets be the deformation functor of τ (for definition of D and other
basic concepts used in the proof, consult [2] or [3]).

Theorem 3.1. The universal deformation ring of τ is R = W [[t]]/(2t, t2).

Proof. Let A ∈ CW and choose some a in the maximal ideal of A. Using the description (2) of S4 in terms of generators
and relations one easily checks that the existence of a homomorphism τ̄a :S4 → Aut(V ⊗k A) such that

τ̄a(u) =
(

1 + a a

0 1 + a

)
, τ̄a(v) =

(
1 + a 0

a 1 + a

)
, τ̄a(r) =

(
0 −1
1 −1

)
, τ̄a(s) =

(
0 1
1 0

)
(6)

is equivalent to 2a = a2 = 0. Moreover, it is then unique and is a deformation of τ to A. The map Φ : Hom(R, ·) → D

given by

ΦA : Hom(R,A) � ϕ �→ τ̄ϕ(t) ∈ D(A)
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is thus a well-defined morphism of functors. I claim that each ΦA is injective. In fact, ΦA(ϕ1) = ΦA(ϕ2) means
that τ̄ϕ1(t) and τ̄ϕ2(t) are conjugate by some matrix P ∈ ker(GL2(A) → GL2(k)). Such a P necessarily commutes
with τ̄ϕ1(t)(r) = τ̄ϕ2(t)(r) = ( 0 −1

1 −1

)
and τ̄ϕ1(t)(s) = τ̄ϕ2(t)(s) = (

0 1
1 0

)
, hence with the algebra generated by these ma-

trices, which is all of M2(A). Thus ϕ1(t) = ϕ2(t). Since the tangent spaces to both functors are one dimensional (cf.
Lemma 2.4), this also proves that ΦA is bijective for A = k[x]/x2.

We claim now that Φ is smooth. Let A′ → A be a small surjection in CW with kernel I and assume that τ̄a ∈
D(A) is in the image of the map D(A′) → D(A), i.e., the obstruction induced by τ̄a in H2(S4,M) is zero, and so
is its image in H2(K,M). We shall only compute the latter one. Choose a lift a′ of a to A′ and for the sake of
calculating the obstruction choose the following lifts τ̃ (k) of τ̄a(k) to A′: τ̃ (0) = id, τ̃ (u) = τ̄a′(u), τ̃ (v) = τ̄a′(v),
τ̃ (uv) = τ̄a′(u)τ̄a′(v). These lifts define a 2-cocycle η in H2(K,M) ⊗ I given by η(k, l) = τ̃ (k)τ̃ (l)τ̃ (kl)−1 − id. We
have η(0, k) = η(k,0) = η(u, v) = 0 and thus by Lemma 2.3(ii) η = 0. Hence, in particular,

η(u,u) =
(

2a′ + a′2 2a′ + 2a′2

0 2a′ + a′2

)
= 0

and thus 2a′ = a′2 = 0. Hence τ̄a′ is another lift of τ̄a to A′. Since the fibers of the maps Hom(R,A′) → Hom(R,A)

and D(A′) → D(A) are transitive under the action of respective tangent spaces, one can in fact shift τ̄a′ by an image
of an element in Hom(R,A′) so as to obtain any element in the fiber. This proves that the map

Hom(R,A′) → Hom(R,A) ×D(A) D(A′)

is surjective and hence Φ is smooth. Thus R is a versal deformation ring of τ . Universality follows from the injectivity
of all the maps ΦA. �
Corollary 3.2. The universal deformation ring of τ is not a complete intersection ring.
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