

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 343 (2006) 569-572

COMPTES RENDUS MATHEMATIQUE

http://france.elsevier.com/direct/CRASS1/

Partial Differential Equations

On nonlinear diffusion problems with strong degeneracy

Kaouther Ammar

Institut für Mathematik, TU Berlin, Strasse des 17 juni 135, 10625 Berlin, Germany Received 29 June 2006; accepted after revision 26 September 2006 Available online 23 October 2006 Presented by Jean-Michel Bony

Abstract

In this Note, we study the 'triply' degenerate problem: $b(v)_t - \Delta g(v) + \operatorname{div} \Phi(v) = f$ on $Q := (0, T) \times \Omega$, $b(v(0, \cdot)) = b(v_0)$ on Ω and g(v) = g(a) 'on some part of the boundary' $(0, T) \times \partial \Omega$, in the case of continuous nonhomogenous and nonstationary boundary data *a*. The functions *b*, *g* are assumed to be continuous nondecreasing and to verify the normalisation condition b(0) =g(0) = 0 and the range condition $R(b + g) = \mathbb{R}$. Using monotonicity and penalization methods, we prove existence of a weak entropy solution in the spirit of F. Otto (1996). *To cite this article: K. Ammar, C. R. Acad. Sci. Paris, Ser. I 343 (2006).* © 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur les problèmes de diffusion non linéaires avec dégénérescence forte. Dans cette Note, on étudie le problème triplement dégénéré : $b(v)_t - \Delta g(v) + \operatorname{div} \Phi(v) = f$ sur $Q := (0, T) \times \Omega$, $b(v(0, \cdot)) = b(v_0)$ dans Ω et g(v) = g(a) « sur une partie de la frontière » $(0, T) \times \partial \Omega$, dans le cas d'une donnée *a* continue non homogène et non stationnaire sur le bord. Les fonctions *b*, *g* sont supposées être continues croissantes, vérifiant la condition de normalisation : b(0) = g(0) = 0 et de surjectivité $R(b+g) = \mathbb{R}$. En utilisant des méthodes de monotonie et de pénalisation, on prouve l'existence d'une solution entropique au sens de F. Otto (1996). *Pour citer cet article : K. Ammar, C. R. Acad. Sci. Paris, Ser. I 343 (2006).*

© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Ω be strong $C^{1,1}$ bounded open subset of \mathbb{R}^N with regular boundary if N > 1. We consider the following initial boundary value problem of parabolic-hyperbolic type:

$$P_{b,g}(v_0, a, f) \begin{cases} \frac{\partial b(v)}{\partial t} - \Delta g(v) + \operatorname{div} \Phi(v) = f & \text{on } Q := (0, T) \times \Omega, \\ "g(v) = g(a) & \text{on some part of" } \Sigma := (0, T) \times \partial \Omega, \\ b(v)(0, \cdot) = u_0 := b(v_0) & \text{on } \Omega, \end{cases}$$

where $\Phi : \mathbb{R} \to \mathbb{R}^N$ is a continuous vector field, $b, g : \mathbb{R} \to \mathbb{R}$ are nondecreasing, locally Lipschitz continuous such that b(0) = g(0) = 0 and $R(b+g) = \mathbb{R}$. We suppose that $v_0 \in L^{\infty}(\Omega)$, $f \in L^{\infty}(Q)$ and

E-mail address: ammar@math.tu-berlin.de (K. Ammar).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2006.09.030

$$a \in C(\Sigma) \text{ is a trace of a function } \tilde{a} \in C(Q) \text{ with } g(\tilde{a}) \in L^2(0, T, H^1(\Omega)),$$

$$\Delta g(\tilde{a}) \in L^1(Q) \text{ and } \tilde{a}_t \in L^1(Q).$$
(1)

Equations of this type arise in certain models of fluid flows through porous media, Stefan-type problems, and so on. In particular when g(u) = u, the problem is of elliptic-parabolic type and when g(u) = 0, b(u) = u, it is of hyperbolic type. In this last case, the boundary condition is understood in the sense of [2] and not in the Dirichlet sense. In a quite recent work [4], the authors have studied the problem $P_{b,g}(v_0, a, f)$ in the particular case where b(u) = u and they have introduced a new formulation of the boundary conditions and proved uniqueness of a weak entropy solution and consistency with viscosity approximations. The boundary condition is given by means of a limit expressed by 'boundary layer' sequences and is a generalization of the condition proposed by F. Otto in [6]. In [5], A. Michel and J. Vovelle proposed an equivalent integral version of the so-called weak entropy condition and proved the convergence of a numerical finite volume scheme towards a generalized version called entropy-process solution. Here, we give an equivalent formulation adapted for the 'triply' degenerate case and propose a new 'analytic' proof of the existence result. Taking into account the influence of the degenerate parabolic term on the boundary conditions, we are invited to mix the techniques of [4] and [1] in order to solve the general problem. Our new formulation, clarifies in particular the relation between the formulations proposed by [3] in one hand and by [4] and [5] on the other hand.

2. Definitions and main results

For any $k, a \in \mathbb{R}$, for a.e. $x \in \partial \Omega$; let

$$\omega^{+}(x,k,a) := \max_{k \leqslant r, s \leqslant a \lor k} \left| \left(\Phi(r) - \Phi(s) \right) \cdot \eta(x) \right|,$$

$$\omega^{-}(x,k,a) := \max_{a \land k \leqslant r, s \leqslant k} \left| \left(\Phi(r) - \Phi(s) \right) \cdot \eta(x) \right|,$$

where η denotes the unit outer normal to $\partial \Omega$. Following [5], we define an entropy solution of $P_{b,g}(v_0, a, f)$ as follows:

Definition 2.1. A function $v \in L^{\infty}(Q)$ is said to be a weak entropy solution to the problem $P_{b,g}(v_0, a, f)$ if

$$g(v) - g(a) \in L^2(0, T, H_0^1(\Omega))$$

and v satisfies the following entropy inequalities:

For all $k \in \mathbb{R}$, for all $\xi \in C_0^{\infty}([0, T) \times \mathbb{R}^N)$ such that $\xi \ge 0$ and $\operatorname{sign}^+(g(a) - g(k))\xi = 0$ a.e. on Σ ,

$$-\int_{\Sigma} \omega^{+}(x,k,a)\xi \leq \int_{Q} \left\{ \left(b(v) - b(k) \right)^{+} \xi_{t} + \chi_{\{v>k\}} \left(\Phi(v) - \Phi(k) \right) \cdot \nabla \xi + \chi_{\{v>k\}} f \xi - \nabla \left(g(v) - g(k) \right)^{+} \cdot \nabla \xi \right\} + \int_{\Omega} \left(b(v_{0}) - b(k) \right)^{+} \xi(0,\cdot)$$
(2)

and for all $k \in \mathbb{R}$, for all $\xi \in C_0^{\infty}([0, T) \times \mathbb{R}^N)$ such that $\xi \ge 0$ and $\operatorname{sign}^+(g(k) - g(a))\xi = 0$ a.e. on Σ ,

$$-\int_{\Sigma} \omega^{-}(x,k,a)\xi \leqslant \int_{Q} \left\{ \left(b(k) - b(v) \right)^{+} \xi_{t} + \chi_{\{k>v\}} \left(\Phi(k) - \Phi(v) \right) \cdot \nabla \xi - \chi_{\{k>v\}} f\xi - \nabla \left(g(k) - g(v) \right)^{+} \cdot \nabla \xi \right\} + \int_{\Omega} \left(b(k) - b(v_{0}) \right)^{+} \xi(0,\cdot).$$
(3)

In particular, v is a weak solution of $P_{b,g}(v_0, a, f)$ and in the case where g is strictly increasing, the boundary condition is satisfied in the Dirichlet sense. This definition generalizes the one introduced in [1] for the purely hyperbolic problem; and in the case where Φ is Lipschitz continuous and b(v) = v, it can be formulated exactly as in [5].

Theorem 2.2. For any $(v_0, f) \in L^{\infty}(\Omega) \times L^{\infty}(Q)$, for any $a \in C(\Sigma)$ satisfying (1), there exists a unique function $u \in L^{\infty}(Q)$ such that u = b(v) and v is a weak entropy solution of $P_{b,g}(v_0, a, f)$.

The uniqueness result follows as a consequence of the following L^1 -comparison principle.

Theorem 2.3. For i = 1, 2, let $(v_{0i}, f_i) \in L^{\infty}(\Omega) \times L^{\infty}(Q)$ and $a_i \in C(\Sigma)$ satisfying (1) and such that $g(a_1) \leq g(a_2)$ a.e. on Σ . Let $v_i \in L^{\infty}(Q)$ be an entropy solution of $P_{b,g}(v_{0i}, a_i, f_i)$.

Then there exist $\kappa \in L^{\infty}(Q)$ with $\kappa \in \text{sign}^+(v_1 - v_2)$ a.e. in Q such that, for any $\xi \in \mathcal{D}([0, T[\times \mathbb{R}^N), \xi \ge 0, \mathbb{R}^N))$

$$-\int_{\Sigma} \omega^{-}(x, a_{1}, a_{2})\xi \leq \int_{Q} (b(v_{1}) - b(v_{2}))^{+} \xi_{t} + \chi_{\{v_{1} > v_{2}\}} (\Phi(v_{1}) - \Phi(v_{2})) \cdot \nabla \xi - \int_{Q} \nabla (g(v_{1}) - g(v_{2}))^{+} \cdot \nabla \xi + \int_{Q} \kappa(f_{1} - f_{2})\xi + \int_{\Omega} (b(v_{01}) - b(v_{02}))^{+} \xi(0, \cdot).$$

$$(4)$$

3. Proof of the existence and uniqueness result

The uniqueness is proved through the method of doubling variables of Kruzhkov and uses similar arguments as in [1]. The proof of the existence result consists of three steps: in a first step, we prove existence of a bounded entropy solution of the penalized problem with L^{∞} data v_0, a, f ,

$$P_{b_{l},g}(v_{0}, a, f, \psi) \begin{cases} b_{r}(v)_{t} - \Delta g(v) + \operatorname{div} \Phi(v) + \psi(v) = f & \text{on } Q, \\ "v = a" & \text{on some part of } \Sigma, \\ b_{r}(v(0, \cdot)) = b_{r}(v_{0}) & \text{in } \Omega, \end{cases}$$

where $b_r(x) = b(x) + \frac{1}{r}x$, $x \in \mathbb{R}$ and ψ is an increasing Lipschitz continuous function on \mathbb{R} such that $\psi(0) = 0$. This is done via approximation by 'doubly penalized' problems with homogeneous boundary condition of type:

$$P_{b_{r},g}^{m,n}(\tilde{v}_{0},0,\tilde{f},\psi) \begin{cases} \frac{\partial b_{r}(v)}{\partial t} - \Delta g(v) + \operatorname{div} \Phi(v) + \beta_{m,n}(v) + \psi(v_{m,n}) = \tilde{f} & \operatorname{on} \tilde{Q}, \\ g(v) = 0 & \operatorname{on} \tilde{\Sigma}, \\ v(0,\cdot) = \tilde{v_{0}} & \operatorname{on} \tilde{\Omega}. \end{cases}$$

Here, $\tilde{\Omega}$ is a Lipschitz domain strictly larger than Ω and $\tilde{Q} = (0, T) \times \tilde{\Omega}$, $\tilde{\Sigma} := (0, T) \times \partial \tilde{\Omega}$. The functions \tilde{v}_0 and \tilde{f} being the trivial extensions by 0 of the data v_0 , f on the larger domain. The function $\tilde{a} \in C(Q)$ is a continuous extension onto \tilde{Q} of a such that $g(\tilde{a}) \in L^2(0, T, H_0^1(\tilde{\Omega})), \Delta g(\tilde{a}) \in L^1(\tilde{Q})$ and $\tilde{a}_t \in L^1(\tilde{Q})$. Finally, for $m, n \in \mathbb{N}$, $\beta_{m,n}$ is the graph defined on \mathbb{R} by:

$$\beta_{m,n}(t,x,r) := \chi_{\tilde{Q}\setminus Q} \left(m \left(r - \tilde{a}(x) \right)^+ - n \left(\tilde{a}(x) - r \right) \right)^+, \quad \forall r \in \mathbb{R}, \text{ a.e. } (t,x) \in \tilde{Q}.$$

Due to the Lipschitz continuity of $\beta_{m,n}$ and ψ , using Banach's fixed point theorem, we prove existence of an entropy solution $v \in C([0, T]; L^1(\tilde{Q})) \cap L^{\infty}(\tilde{Q})$ (obtained via non-linear semi-group theory). Moreover, a comparison principle holds for entropy solutions corresponding to different penalization parameters: for any $m, m', n \in \mathbb{N}$ with $m \leq m'$, there exists $\kappa \in L^{\infty}(\tilde{Q})$ with $\kappa \in \operatorname{sign}^+(v_{m,n} - v_{m',n})$ a.e. on \tilde{Q} such that, for a.e. $t \in (0, T)$,

$$\int_{0}^{t}\int_{\tilde{\Omega}}\left(\psi(v_{m',n})-\psi(v_{m,n})\right)^{+} \leqslant \int_{0}^{t}\int_{\tilde{\Omega}}^{t}\kappa\left(\tilde{f}-\beta_{m',n}(v_{m',n})-\left(\tilde{f}-\beta_{m,n}(v_{m,n})\right)\right)\leqslant 0.$$

Consequently, $v_{m',n} \leq v_{m,n}$ and $v_{m,n} \leq v_{m,n'}$ a.e. $(t, x) \in \tilde{Q}$. This comparison result ensures the a.e. convergence of the solutions $v_{m,n}$ as, successively, $m \to \infty$ and $n \to \infty$. By a straightforward application of the maximum principle and by standard energy estimates, it can be proved that $v_{m,n}$ is bounded in $L^{\infty}(Q)$ and $g(v_{m,n})$ is bounded in $L^{2}(0, T, H^{1}(\Omega))$ uniformly with respect to m, n. This in turn implies the strong convergence of $v_{m,n}$ in $L^{p}(Q)$ to $v_{r} \in L^{p}(Q)$ and one can deduce that v_{r} is a weak entropy solution of the limit problem $P_{b_{r,g}}(v_{0}, a, f, \psi)$.

In a second step, thanks to the strong perturbation term ψ , we prove the convergence in $L^1(Q)$ of the approximative sequence v_r to $v^{\psi} \in L^{\infty}(Q)$, weak entropy solution of the limit problem $P_{b,g}(v_0, a, f, \psi)$. This allows us, in particular, to solve for $p, q \in \mathbb{N}$ the degenerate problem $P_{b,g}(v_0, a, f, p, q)$: $b(v)_t - \Delta g(v) + \operatorname{div} \Phi(v) + \frac{1}{p}v^+ - \frac{1}{q}v^- = f$ on Q, $b(v(0, \cdot)) = b(v_0)$ on Ω and g(v) = g(a) on Σ with L^{∞} data.

Finally, in the third step, using monotonicity arguments and comparison results, we prove that the sequence of entropy solutions $v_{p,q}$ associated to $P_{b,g}(v_0, a, f, p, q)$ is monotone with respect to p and q, which ensures its a.e. convergence when $p \to +\infty$ and $q \to +\infty$. Together with the range condition, this allows to deduce compactness results in L^1 and the weak convergence of $g(v_{p,q})$ in $L^2(0, T, H^1(\Omega))$.

References

- [1] K. Ammar, J. Carrillo, P. Wittbold, Scalar conservation laws with general boundary condition and continuous flux function, J. Differential Equations (2006), in press.
- [2] C. Bardos, A.Y. LeRoux, J.C. Nedelec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations 4 (9) (1979) 1017–1034.
- [3] J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Rational Mech. Math. 147 (1999) 269-361.
- [4] C. Mascia, A. Porretta, A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations, Arch. Rational Mech. Anal. 163 (2002) 87–124.
- [5] A. Michel, J. Vovelle, Entropy formulation for a parabolic degenerate problem with general Dirichlet boundary conditions and application to the convergence of FV methods, SIAM J. Numer. Anal. 41 (6) (2003) 2262–2293.
- [6] F. Otto, Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris 322 (1996) 729-734.