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Abstract

In this Note, we study the ‘triply’ degenerate problem: b(v)t − �g(v) + divΦ(v) = f on Q := (0, T ) × Ω , b(v(0, ·)) = b(v0)

on Ω and g(v) = g(a) ‘on some part of the boundary’ (0, T ) × ∂Ω , in the case of continuous nonhomogenous and nonstationary
boundary data a. The functions b,g are assumed to be continuous nondecreasing and to verify the normalisation condition b(0) =
g(0) = 0 and the range condition R(b + g) = R. Using monotonicity and penalization methods, we prove existence of a weak
entropy solution in the spirit of F. Otto (1996). To cite this article: K. Ammar, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur les problèmes de diffusion non linéaires avec dégénérescence forte. Dans cette Note, on étudie le problème triplement
dégénéré : b(v)t − �g(v) + divΦ(v) = f sur Q := (0, T ) × Ω , b(v(0, ·)) = b(v0) dans Ω et g(v) = g(a) « sur une partie de la
frontière » (0, T ) × ∂Ω , dans le cas d’une donnée a continue non homogène et non stationnaire sur le bord. Les fonctions b,g sont
supposées être continues croissantes, vérifiant la condition de normalisation : b(0) = g(0) = 0 et de surjectivité R(b + g) = R. En
utilisant des méthodes de monotonie et de pénalisation, on prouve l’existence d’une solution entropique au sens de F. Otto (1996).
Pour citer cet article : K. Ammar, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Ω be strong C1,1 bounded open subset of R
N with regular boundary if N > 1. We consider the following

initial boundary value problem of parabolic-hyperbolic type:

Pb,g(v0, a, f )

⎧⎪⎪⎨
⎪⎪⎩

∂b(v)

∂t
− �g(v) + divΦ(v) = f on Q := (0, T ) × Ω,

“g(v) = g(a) on some part of” Σ := (0, T ) × ∂Ω,

b(v)(0, ·) = u0 := b(v0) on Ω,

where Φ : R → R
N is a continuous vector field, b,g : R → R are nondecreasing, locally Lipschitz continuous such

that b(0) = g(0) = 0 and R(b + g) = R. We suppose that v0 ∈ L∞(Ω), f ∈ L∞(Q) and
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{
a ∈ C(Σ) is a trace of a function ã ∈ C(Q) with g(ã) ∈ L2(0, T ,H 1(Ω)),

�g(ã) ∈ L1(Q) and ãt ∈ L1(Q).
(1)

Equations of this type arise in certain models of fluid flows through porous media, Stefan-type problems, and so on.
In particular when g(u) = u, the problem is of elliptic-parabolic type and when g(u) = 0, b(u) = u, it is of hyperbolic
type. In this last case, the boundary condition is understood in the sense of [2] and not in the Dirichlet sense. In a
quite recent work [4], the authors have studied the problem Pb,g(v0, a, f ) in the particular case where b(u) = u and
they have introduced a new formulation of the boundary conditions and proved uniqueness of a weak entropy solution
and consistency with viscosity approximations. The boundary condition is given by means of a limit expressed by
‘boundary layer’ sequences and is a generalization of the condition proposed by F. Otto in [6]. In [5], A. Michel and
J. Vovelle proposed an equivalent integral version of the so-called weak entropy condition and proved the convergence
of a numerical finite volume scheme towards a generalized version called entropy-process solution. Here, we give an
equivalent formulation adapted for the ‘triply’ degenerate case and propose a new ‘analytic’ proof of the existence
result. Taking into account the influence of the degenerate parabolic term on the boundary conditions, we are invited
to mix the techniques of [4] and [1] in order to solve the general problem. Our new formulation, clarifies in particular
the relation between the formulations proposed by [3] in one hand and by [4] and [5] on the other hand.

2. Definitions and main results

For any k, a ∈ R, for a.e. x ∈ ∂Ω ; let

ω+(x, k, a) := max
k�r,s�a∨k

∣∣(Φ(r) − Φ(s)
) · η(x)

∣∣,
ω−(x, k, a) := max

a∧k�r,s�k

∣∣(Φ(r) − Φ(s)
) · η(x)

∣∣,
where η denotes the unit outer normal to ∂Ω . Following [5], we define an entropy solution of Pb,g(v0, a, f ) as follows:

Definition 2.1. A function v ∈ L∞(Q) is said to be a weak entropy solution to the problem Pb,g(v0, a, f ) if

g(v) − g(a) ∈ L2(0, T ,H 1
0 (Ω)

)
,

and v satisfies the following entropy inequalities:
For all k ∈ R, for all ξ ∈ C∞

0 ([0, T ) × R
N) such that ξ � 0 and sign+(g(a) − g(k))ξ = 0 a.e. on Σ ,

−
∫
Σ

ω+(x, k, a)ξ �
∫
Q

{(
b(v) − b(k)

)+
ξt + χ{v>k}

(
Φ(v) − Φ(k)

) · ∇ξ

+ χ{v>k}f ξ − ∇(
g(v) − g(k)

)+ · ∇ξ
} +

∫
Ω

(
b(v0) − b(k)

)+
ξ(0, ·) (2)

and for all k ∈ R, for all ξ ∈ C∞
0 ([0, T ) × R

N) such that ξ � 0 and sign+(g(k) − g(a))ξ = 0 a.e. on Σ ,

−
∫
Σ

ω−(x, k, a)ξ �
∫
Q

{(
b(k) − b(v)

)+
ξt + χ{k>v}

(
Φ(k) − Φ(v)

) · ∇ξ

− χ{k>v}f ξ − ∇(
g(k) − g(v)

)+ · ∇ξ
} +

∫
Ω

(
b(k) − b(v0)

)+
ξ(0, ·). (3)

In particular, v is a weak solution of Pb,g(v0, a, f ) and in the case where g is strictly increasing, the boundary con-
dition is satisfied in the Dirichlet sense. This definition generalizes the one introduced in [1] for the purely hyperbolic
problem; and in the case where Φ is Lipschitz continuous and b(v) = v, it can be formulated exactly as in [5].

Theorem 2.2. For any (v0, f ) ∈ L∞(Ω) × L∞(Q), for any a ∈ C(Σ) satisfying (1), there exists a unique function
u ∈ L∞(Q) such that u = b(v) and v is a weak entropy solution of Pb,g(v0, a, f ).
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The uniqueness result follows as a consequence of the following L1-comparison principle.

Theorem 2.3. For i = 1,2, let (v0i , fi) ∈ L∞(Ω)×L∞(Q) and ai ∈ C(Σ) satisfying (1) and such that g(a1) � g(a2)

a.e. on Σ . Let vi ∈ L∞(Q) be an entropy solution of Pb,g(v0i , ai, fi).
Then there exist κ ∈ L∞(Q) with κ ∈ sign+(v1 − v2) a.e. in Q such that, for any ξ ∈ D([0, T [ × R

N), ξ � 0,

−
∫
Σ

ω−(x, a1, a2)ξ �
∫
Q

(
b(v1) − b(v2)

)+
ξt + χ{v1>v2}

(
Φ(v1) − Φ(v2)

) · ∇ξ −
∫
Q

∇(
g(v1) − g(v2)

)+ · ∇ξ

+
∫
Q

κ(f1 − f2)ξ +
∫
Ω

(
b(v01) − b(v02)

)+
ξ(0, ·). (4)

3. Proof of the existence and uniqueness result

The uniqueness is proved through the method of doubling variables of Kruzhkov and uses similar arguments as
in [1]. The proof of the existence result consists of three steps: in a first step, we prove existence of a bounded entropy
solution of the penalized problem with L∞ data v0, a, f ,

Pbl,g(v0, a, f,ψ)

⎧⎪⎨
⎪⎩

br(v)t − �g(v) + divΦ(v) + ψ(v) = f on Q,

“v = a” on some part of Σ,

br(v(0, ·)) = br(v0) in Ω,

where br(x) = b(x) + 1
r
x, x ∈ R and ψ is an increasing Lipschitz continuous function on R such that ψ(0) = 0. This

is done via approximation by ‘doubly penalized’ problems with homogeneous boundary condition of type:

P
m,n
br ,g

(ṽ0,0, f̃ ,ψ)

⎧⎪⎪⎨
⎪⎪⎩

∂br(v)

∂t
− �g(v) + divΦ(v) + βm,n(v) + ψ(vm,n) = f̃ on Q̃,

g(v) = 0 on Σ̃,

v(0, ·) = ṽ0 on Ω̃.

Here, Ω̃ is a Lipschitz domain strictly larger than Ω and Q̃ = (0, T ) × Ω̃ , Σ̃ := (0, T ) × ∂Ω̃ . The functions ṽ0 and
f̃ being the trivial extensions by 0 of the data v0, f on the larger domain. The function ã ∈ C(Q) is a continuous
extension onto Q̃ of a such that g(ã) ∈ L2(0, T ,H 1

0 (Ω̃)), �g(ã) ∈ L1(Q̃) and ãt ∈ L1(Q̃). Finally, for m,n ∈ N,
βm,n is the graph defined on R by:

βm,n(t, x, r) := χ
Q̃\Q

(
m

(
r − ã(x)

)+ − n
(
ã(x) − r

))+
, ∀r ∈ R, a.e. (t, x) ∈ Q̃.

Due to the Lipschitz continuity of βm,n and ψ , using Banach’s fixed point theorem, we prove existence of an en-
tropy solution v ∈ C([0, T ];L1(Q̃)) ∩ L∞(Q̃) (obtained via non-linear semi-group theory). Moreover, a comparison
principle holds for entropy solutions corresponding to different penalization parameters: for any m,m′, n ∈ N with
m � m′, there exists κ ∈ L∞(Q̃) with κ ∈ sign+(vm,n − vm′,n) a.e. on Q̃ such that, for a.e. t ∈ (0, T ),

t∫
0

∫
Ω̃

(
ψ(vm′,n) − ψ(vm,n)

)+ �
t∫

0

∫
Ω̃

κ
(
f̃ − βm′,n(vm′,n) − (

f̃ − βm,n(vm,n)
))

� 0.

Consequently, vm′,n � vm,n and vm,n � vm,n′ a.e. (t, x) ∈ Q̃. This comparison result ensures the a.e. convergence of
the solutions vm,n as, successively, m → ∞ and n → ∞. By a straightforward application of the maximum princi-
ple and by standard energy estimates, it can be proved that vm,n is bounded in L∞(Q) and g(vm,n) is bounded in
L2(0, T ,H 1(Ω)) uniformly with respect to m,n. This in turn implies the strong convergence of vm,n in Lp(Q) to
vr ∈ Lp(Q) and one can deduce that vr is a weak entropy solution of the limit problem Pbr ,g(v0, a, f,ψ).

In a second step, thanks to the strong perturbation term ψ , we prove the convergence in L1(Q) of the approximative
sequence vr to vψ ∈ L∞(Q), weak entropy solution of the limit problem Pb,g(v0, a, f,ψ). This allows us, in partic-
ular, to solve for p,q ∈ N the degenerate problem Pb,g(v0, a, f,p, q): b(v)t − �g(v) + divΦ(v) + 1

p
v+ − 1

q
v− = f

on Q, b(v(0, ·)) = b(v0) on Ω and g(v) = g(a) on Σ with L∞ data.



572 K. Ammar / C. R. Acad. Sci. Paris, Ser. I 343 (2006) 569–572
Finally, in the third step, using monotonicity arguments and comparison results, we prove that the sequence of
entropy solutions vp,q associated to Pb,g(v0, a, f,p, q) is monotone with respect to p and q , which ensures its a.e.
convergence when p → +∞ and q → +∞. Together with the range condition, this allows to deduce compactness
results in L1 and the weak convergence of g(vp,q) in L2(0, T ,H 1(Ω)).
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