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Abstract

For a germ g of holomorphic function with an isolated singularity at the origin of C
n we show that there is a pole for the

meromorphic continuation of the distribution 1
�(λ)

.|g|2λḡ−n at λ = −n − α where α is the smallest root in its class modulo Z of
the reduced Bernstein–Sato polynomial of g. This rather ‘unexpected’ result is a consequence of the fact that the self-duality of the
Brieskorn (a, b)-module Eg associated to g exchanges the biggest simple pole sub-(a, b)-module of Eg with the saturation of Eg

by b−1a. To cite this article: D. Barlet, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

A propos du (a,b)-module de Brieskorn d’une fonction à singularité isolée. Pour un germe g de fonction holomorphe à
singularité isolée à l’origine de C

n nous montrons que le prolongement méromorphe de la distribution 1
�(λ)

.|g|2λḡ−n admet un
pôle en λ = −n − α où α est la plus petite racine dans sa classe modulo Z du polynôme réduit de Bernstein–Sato de g. Ce résultat
assez « inattendu » est conséquence du fait que l’auto-dualité du (a, b)-module de Brieskorn Eg associé à g échange le plus grand
sous-module à pôle simple de Eg avec le saturé de Eg par b−1a. Pour citer cet article : D. Barlet, C. R. Acad. Sci. Paris, Ser. I
343 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let g̃ : (Cn,0) → (C,0) a germ of holomorphic function with an isolated singularity. Denote by g :X → D a
Milnor representative of g̃. Let bg be the reduced1 Bernstein–Sato polynomial of g. Let α be the biggest root of
bg in its class modulo Z. A classical question is whether for j ∈ N big enough, the meromorphic extension of the
distribution 1

�(λ)
|g|2λḡ−j� has a pole at λ = α. The following result suggests that, maybe, this question is not the

right one:

E-mail address: barlet@iecn.u-nancy.fr (D. Barlet).
1 If b is the usual Bernstein–Sato polynomial of g, it is defined by the formula (s + 1).bg(s) = b(s). Then bg is the minimal polynomial of the

action of −b−1a acting on Ẽg/b.Ẽg where Ẽg is the saturation of Eg by b−1a; see [3].
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Theorem 1. Let α be the smallest2 root of bg in its class modulo Z, and let d be its multiplicity (as a root of bg). Then
the meromorphic extension of the distribution 1

�(λ)
|g|2λḡ−n on X has a pole of order � d at −n − α.

Remarks.

(1) In general it is not clear that −n − α is a root of bg . But, of course, the previous theorem implies that there
exists at least d roots of bg (counting multiplicities) equal to −α modulo Z which are bigger than −n − α. If
−n − α ∈ [−1,0[ then there is no choice: −n − α is a root of multiplicity � d of bg .

(2) This result gives, in term of the Bernstein–Sato polynomial bg , a precise value where we know that a pole appears
in the class [β] modulo Z of a root β of bg . But the pole which is given is not at the biggest root of bg in this class
but at the biggest root of the polynomial b∗

g(z) := bg(−n − z) in this class!
A clear reason for that is given in the proof: the dual Bernstein–Sato polynomial b∗

g is the minimal polynomial of

−b−1a acting on F/b.F where F is the biggest simple pole sub-(a, b)-module of the Brieskorn (a, b)-module E

associated to g. So it lies in the lattice given by holomorphic forms.
On the contrary, bg is the minimal polynomial of −b−1a acting on Ẽ/bẼ where Ẽ is the saturation of E by
b−1a, or, in other words, the minimal simple pole (a, b)-module containing E. So, if E is not a simple pole
(a, b)-module, elements in Ẽ are not always representable in the holomorphic lattice, and so we may need some
power of g as denominators. Also this may introduce integral shifts for the poles.

(3) The case where E is a simple pole (a, b)-module (that is to say when we have F = E = Ẽ) corresponds to a
quasi-homogeneous g, with a suitable choice of coordinates. In this case we have b∗

g = bg , so −n − α is the
smallest root of bg in its class modulo Z. However, of course, this case was already known long ago.

Let me recall some basic facts for the convenience of the reader:

(1) An (a, b)-module E is a free finite type module over the ring C[[b]] with an C-linear endomorphism a :E → E

such that a is continuous for the b-adic topology and satisfies ab − ba = b2. For instance, for any δ ∈ C, endowed
with a defined by a.e = δ.b.e the rank one C[[b]]-module C[[b]].e is an (a, b)-module. For δ = 1 it is easy to
identify E1 with C[[z]] where b is the primitive without constant and a is the multiplication by z.

(2) For any germ g of holomorphic function with an isolated singularity at the origin of Cn the formal completion
in g of the “usual” Brieskorn module �n

0/dg ∧ d�n−2
0 (see [8]) of g is an (a, b)-module.3 It will be denoted Eg

(see [3]). This Brieskorn (a, b)-module is regular, that means that its saturation by b−1a is again a finite type
C[[b]]-module.

(3) We say that the (a, b)-module E has a simple pole4 when a.E ⊂ b.E. Of course a simple pole (a, b)-module is
regular. Any regular (a, b)-module E contains a biggest sub-(a, b)-module with simple pole (see [6]).

(4) For an (a, b)-module E note Ě the (a, b)-module obtained by changing a and b in −a and −b. For two (a, b)-
modules E,F let Homa,b(E,F ) be the (a, b)-module obtained as follows (see [4] and compare with the tensor
product introduced in [5]): as an C[[b]]-module it is equal to HomC[[b]](E,F ). The endomorphism a is given on
it by

(a.ϕ)(x) = aF .ϕ(x) − ϕ(aE.x) ∀x ∈ E ϕ ∈ HomC[[b]](E,F ).

(5) Another special property of the (a, b)-module Eg is that we have a canonical isomorphism of (a, b)-modules5

(see [7])

Ěg � Homa,b(Eg,En)

where En = Eδ for δ = n (see example in (1) above).

2 Recall that we are dealing with negative numbers.
3 With a := ×g and b := dg ∧ d−1.
4 This corresponds to the usual notion of simple pole for a singular point of an ordinary holomorphic differential equation.
5 Corresponding to the microlocal duality.
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Proposition 2. Assume that E is a regular (a, b)-module such that for some δ ∈ C we have an isomorphism of
(a, b)-module Ě � Homa,b(Eg,Eδ). Let F the biggest simple pole sub-(a, b)-module of E and Ẽ the saturation of E

by b−1a. Then the are (a, b)-modules isomorphisms

ˇ̃
E → Homa,b(F,Eδ) and F̌ → Homa,b(Ẽ,Eδ).

Definition 3. Let E be a regular (a, b)-module, and let F be its biggest simple pole sub-(a, b)-module. We shall call
dual Bernstein–Sato polynomial of E, denoted by b∗

E , the minimal polynomial of the action of −b−1a on the finite
dimensional C-vector space F/b.F .

Remark. Let δ be a given complex number, and assume that the (a, b)-module E is equipped with an (a, b)-linear
isomorphism κ : Ě → Homa,b(E,Eδ). Then we have b∗

E(z) = (−1)r .bE(−δ − z) where r := deg(bE), since b−1a

acts on the same way on E and Ě. So, for the Brieskorn (a, b)-module of a germ of an holomorphic function g with
an isolated singularity at the origin of C

n the dual Bernstein polynomial of Eg is the dual Bernstein–Sato polynomial
of g as defined before (up to a sign). Using Malgrange’s positivity theorem (see [10]) it is easy to show that the roots
of b∗

g are strictly negative. This gives, using [9], the fact that the roots of bg are contained in ]−n,0[.

Sketch of proof of the theorem. The only new point for this proof, compared to [1] and [2], is the following:
In a simple pole (a, b)-module F , if a spectral value β of multiplicity d for the action of b−1.a on F/bF , is

minimal in its class modulo Z, there exists elements e1, . . . , ed in F , giving a Jordan block of size d for b−1a acting
on F/bF , and such that they satisfy in F the relations a.ej = β.b.ej + b.ej−1, ∀j ∈ [1, d] with the convention e0 = 0
(see [3]).

This enable us, using the standard technics of [1], to build up (n − 1)-holomorphic forms ω1, . . . ,ωd in a neigh-
bourghood of the origin in C

n, such that dωj = β.
dg
g

∧ ωj + dg
g

∧ ωj−1, ∀j ∈ [1, d] (with the convention ω0 = 0),

which induce a Jordan block of size d in Hn−1(F,C) where F is the Milnor fiber of g, for the eigenvalue exp(−2iπ.β)

of the monodromy.
So we avoid in this way the integral shift coming from the use of a lattice which may be not contained in the one

given by holomorphic forms and we can realize the pole of our statement for λ = −β , using the same strategy than
in [1] for eigenvalues 	= 1 and [2] for the eigenvalue 1. �
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