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Abstract

We study magnetic pseudodifferential operators associated with elliptic symbols and with anisotropic potentials. We prove
affiliation to suitable C∗-algebras and give formulae for the essential spectrum as a union of spectra of some asymptotic operators.
To cite this article: M. Măntoiu et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur le spectre essentiel des opérateurs pseudodifférentiels magnétiques. Nous étudions des opérateurs pseudodifférentiels
magnétiques associés à des symboles elliptiques et ayant des potentiels anisotropes. Nous démontrons leur affiliation à certaines
C∗-algèbres et nous donnons des formules pour le spectre essentiel comme une union des spectres de certains opérateurs asymp-
totiques. Pour citer cet article : M. Măntoiu et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In [8] we have defined a gauge-covariant quantization for a particle in a magnetic field, extending the Weyl
pseudodifferential calculus (see also [6]). Let X be RN , X� its dual, Ξ := X × X� and H := L2(X). For a con-
tinuous vector potential A generating a continuous magnetic field B and for any f :Ξ → C we define the magnetic
pseudodifferential operator

[
OpA(f )u

]
(x) :=

∫
X

dy

∫
X�

dp eip·(x−y)λA(x;y − x)f

(
1

2
(x + y),p

)
u(y), u ∈H,

where λA(q;x) := exp(−iΓ A[q, q + x]) and Γ A[q, q + x] is the circulation of A from q to q + x. The magnetic
Moyal product acting on functions f,g :Ξ → C verifies OpA(f ◦ g) = OpA(f )OpA(g). This operation is defined
for ξ = (q,p), η = (x, k) and ζ = (y, l) in Ξ by
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[f ◦ g](ξ) := 4N

∫
Ξ

dη

∫
Ξ

dζ e−2i(k·y−l·x)ωB
(
q − x − y;2x,2(y − x)

)
f (ξ − η)g(ξ − ζ ), (1)

where ωB(q;x, y) := exp(−iΓ B〈q, q + x, q + x + y〉) and Γ B〈q, q + x, q + x + y〉 is the magnetic flux through the
triangle defined by q , q + x and q + x + y. These integrals are absolutely convergent only for restricted classes of
symbols; for more general distributions we require that the components Bjk of the magnetic field belong to C∞

pol(X),
i.e. they are indefinitely derivable and each derivative is polynomially bounded. Under this assumption, extending (1)
by duality, we define the magnetic Moyal ∗-algebra M(Ξ), which contains the space C∞

pol,u(Ξ) of functions on Ξ

with uniform polynomial growth at infinity. OpA extends to M(Ξ), as continuous operators, resp. in the Schwartz
space S(X) and in its dual S ′(X).

In [9] we have introduced a related C∗-algebraic framework. Let BCu(X), resp. C0(X), denote the algebra of
bounded, uniformly continuous functions on X, resp. the ideal of continuous functions on X vanishing at infinity. We
consider a unital C∗-subalgebra A of BCu(X) (encoding the anisotropy) containing C0(X) and stable by translations,
i.e. θx(a) := a(·+x) ∈ A, ∀a ∈A, x ∈ X. Assuming that Bjk ∈A, the map X×X � (x, y) �→ ωB(x, y) := ωB(·;x, y)

is a 2-cocycle on X with values in the unitary group U(A) of A. We define the product on L1(X;A):

(φ  ψ)(x) :=
∫
X

dy θ y−x
2

[
φ(y)

]
θ y

2

[
ψ(x − y)

]
θ− x

2

[
ωB(y, x − y)

]
, φ,ψ ∈ L1(X;A)

and the involution φ(x) := φ(−x)∗. The associated C∗-algebra is called the twisted crossed product and is denoted
by A�

ω
θ X (or CB

A for shortness). Choosing a continuous vector potential A that generates B , one constructs a faithful,
irreducible representation in H of the algebra CB

A:

[
RepA(φ)u

]
(x) =

∫
X

dy λA(x;y − x)φ

(
1

2
(x + y);y − x

)
u(y), φ ∈ L1(X;A), u ∈H.

RepA and OpA are connected by a partial Fourier transformation F. The enveloping C∗-algebra BB
A of F(L1(X;A)),

endowed with the multiplication ◦ and with the complex conjugation, is isomorphic through this partial Fourier trans-
formation to CB

A and one has OpA(BB
A) = RepA(CB

A).

2. Results

Definition 2.1. (1) An observable affiliated to a C∗-algebra C is a morphism Φ : C0(R) → C.
(2) A function h ∈ C∞(X�) is a symbol of type s if ∀α ∈ N

N, ∃cα > 0 such that |(∂αh)(p)| � cα〈p〉s−|α| for all
p ∈ X�, where 〈p〉 := √

1 + p2. In this case, we write h ∈ Ss(X�).
(3) For s > 0, the symbol h is called elliptic if there exist R,c > 0 such that c〈p〉s � h(p) for all p ∈ X� and

|p| � R. We denote by Ss
el(X

�) the family of elliptic symbols of type s, and set S∞
el (X�) := ⋃

s Ss
el(X

�).

The class Ss(X�) is contained in C∞
pol,u(Ξ) ⊂ M(Ξ). For z /∈ R, we define rz : R → C, rz(t) := (t − z)−1.

BC∞(X) denote the space of complex functions on X with bounded derivatives of any order.

Hypothesis 2.2. B is a magnetic field with components in A∩ BC∞(X) and V is a real element of A.

Theorem 2.3. Under Hypothesis 2.2, each real h ∈ S∞
el (X�) defines an observable ΦB

h,V affiliated to BB
A, such that

for z /∈ R

(h + V − z) ◦ ΦB
h,V (rz) = 1 = ΦB

h,V (rz) ◦ (h + V − z).

Corollary 2.4. In the framework of Theorem 2.3 let A be a continuous vector potential generating B . Then
OpA(h) + V defines a selfadjoint operator Hh(A,V ) in H with domain equal to the range of the operator
OpA[(h − z)−1] (not depending on z /∈ R). This operator is affiliated to OpA(BB ).
A
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Theorem 2.3 leads to a decomposition of the essential spectrum of Hh(A,V ) prescribed by the behaviour at infinity
of B and V . The aims and techniques of proving this result are in a certain relationship with those of [1–5,7] and [11].
Detailed proofs and examples are given in [10].

Let SA be the spectrum of A; X ⊂ SA open and dense. A being stable under translations, the group law θ :X ×
X → X extends to a continuous map θ̃ :X × SA → SA. We denote by FA the complement of X in SA. To any point
of FA we associate its quasi-orbit (the closure of its orbit under θ̃ ). Given any quasi-orbit F we can define ṼF ∈ C(F)

as the restriction of V ∈ A ≡ C(SA) to F (it is in fact defined as limit at infinity along the ultrafilters that belong
to F ). Similarly we can proceed with the components of the magnetic field and define its restriction B̃F . Once we fix
an element x ∈ F we can associate to any element F̃ ∈ C(F) an element F ∈ BCu(X) defined by F(x) := F̃ (θ̃ (x, x)).
We obtain in this way VF and BF ; A,AF denote then continuous vector potentials for B and BF . Let us now consider
a covering of FA by quasi-orbits {Fν}ν .

Theorem 2.5. Under Hypothesis 2.2 and using the above construction, for each real h ∈ S∞
el (X�) we have:

σess
[
Hh(A,V )

] =
⋃
ν

σ
[
Hh(Aν,Vν)

]
,

where Bν ≡ BFν and Vν ≡ VFν .

The localization results proved in [2] (where their physical interpretation is discussed) extend to our situation. For
a quasi-orbit F , let NF be a base of neighbourhoods of F in SA, W := W ∩X for any W ∈NF and let χW(Q) denote
the multiplication operator with the characteristic function on W .

Theorem 2.6. Under Hypothesis 2.2 let h be a real element of S∞
el (X�). Assume that F is a quasi-orbit and let A, AF

be continuous vector potentials for B and BF . If η ∈ C0(R) with supp(η) ∩ σ [Hh(AF ,VF )] = ∅ (an energy cut-off
outside the spectrum of Hh(AF ,VF )), then for any ε > 0 there exists W ∈ NF such that ‖χW(Q)η[Hh(A,V )]‖ � ε.

In particular, the inequality ‖χW(Q)e−itHh(A,V )η[Hh(A,V )]u‖ � ε‖u‖ holds, uniformly in t ∈ R and u ∈ H.

3. Sketch of the Proof of Theorem 2.3

Let (M,◦) be an associative algebra. We look for an inverse of h ∈M. Suppose that there exists h′ ∈M such that
h ◦ h′ and h′ ◦ h have inverses (h ◦ h′)(−1) and (h′ ◦ h)(−1). Then h′ ◦ (h ◦ h′)(−1) is obviously a right inverse for h

and (h′ ◦ h)(−1) ◦ h′ a left inverse for h. Both are thus equal to h(−1). We shall take for h the strictly positive symbol
h + a, with a large enough, and for h′ its pointwise inverse (h + a)−1. In the complete proof several arguments need
regularizations.

We consider an elliptic symbol h of order s, fix a � − infh + 1, set ha := h + a, and denote by h−1
a its inverse for

pointwise multiplication (a symbol of type −s). Since ha , h−1
a are in C∞

pol,u(Ξ):

(
ha ◦ h−1

a

)
(q,p) = 4N

∫
X

dx

∫
X�

dk

∫
X

dy

∫
X�

dl e−2i(k·y−l·x)γ B(q;2x,2y)
ha(p − k)

ha(p − l)
,

where γ B(q;2x,2y) := ωB(q − x − y;2x,2(y − x)). The last factor has a Taylor expansion:

ha(p − k)

ha(p − l)
= 1 +

N∑
j=1

(lj − kj )

∫ 1
0 dt (∂jh)(p − l + t (l − k))

h(p − l) + a
=: 1 +

N∑
j=1

Fa,j (p; k, l).

Denote 〈· , ·〉, the duality between C∞
pol,u(X

� × X�) and the Fourier transform FC∞
pol(X

� × X�) and obtain estimates

for fa,j (q;p) := 〈(Fγ B)(q; · , ·),Fa,j (p; · , ·)〉. Our hypothesis on h and B imply that for any μ > max{1, s} and any
multi-index α ∈ N

N : |(∂α
pfa,j )(q;p)| � ca−1/μ〈p〉s/μ−1−|α|, where c depends on α and j but not on p,q or a [10]. It

is easy to prove that fa,j (·;p) belongs to A, for all p ∈ X�. Then as in [1, Proposition 1.3.3] and [1, Proposition 1.3.6]
one obtains the estimate ‖F−1(fa,j )‖1 � Ca−1/μ. Thus, for a large enough, ‖∑N

j=1 F−1(fa,j )‖1 < 1 holds. It follows

that F−1(1+∑N
j=1 fa,j ) is invertible in the minimal unitization of L1(X;A). Equivalently, ha ◦h−1

a ≡ 1+∑N
j=1 fa,j

is invertible in the minimal unitization of F(L1(X;A)). Its inverse will be denoted by (ha ◦ h−1
a )(−1). By the same
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arguments (see [1, Proposition 1.3.6]) we get h−1
a ∈ F(L1(X)) ⊂ F(L1(X;A)). Thus h−1

a ◦ (ha ◦ h−1
a )(−1) is a well

defined element of F(L1(X;A)). Moreover, one readily gets ha ◦ [h−1
a ◦ (ha ◦ h−1

a )(−1)] = 1. In the same way one
obtains [(h−1

a ◦ ha)
(−1) ◦ h−1

a ] ◦ ha = 1 in M(Ξ). In conclusion, there exists a0 � − infh + 1 such that for any

a > a0 the symbol ha has an inverse h
(−1)
a ∈ F(L1(X;A)) ⊂ BB

A. We define ΦB
h (rx) := h

(−1)
−x for x < −a0. Then

ΦB
h (rx) ∈ F(L1(X;A)) ⊂ BB

A ∩ S ′(Ξ), its norm is uniformly bounded for x in the given domain and (h − x) ◦
ΦB

h (rx) = ΦB
h (rx) ◦ (h − x) = 1, as shown above. This allows us to obtain an extension to the half-strip {z = x + iy |

x < −a0, |y| < δ} for some δ > 0. We end the proof by verifying the resolvent equation for the map{
z = x + iy | x < −a0, |y| < δ

} � z �→ ΦB
h (rz) ∈ F

(
L1(X;A)

)
.

A general argument presented in [1, p. 364] allows now to extend the map ΦB
h to a C∗-algebra morphism

C0(R) → BB
A. The observable ΦB

h,V is finally obtained by a perturbative argument [10].
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