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Abstract

Let u0, r and n be positive integers such that (u0, r) = 1. Let uk = u0 + kr for 1 � k � n. We prove that Ln :=
lcm{u0, u1, . . . , un} � u0(r +1)n which confirms Farhi’s conjecture (2005). Further we show that if r < n, then Ln � u0r(r +1)n.
To cite this article: S. Hong, W. Feng, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Minoration du plus petit commun multiple d’une progression arithmétique finie. Soit u0, r et n des entiers positifs tels que
(u0, r) = 1, posons uk = u0 + kr pour 1 � k � n. Nous démontrons Ln := ppcm(u0, u1, . . . , un) � u0(r + 1)n, ce qui confirme la
conjecture de Fahri (2005). De plus, nous montrons que si r < n alors Ln � u0r(r + 1)n. Pour citer cet article : S. Hong, W. Feng,
C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Arithmetic progression is a basic subject in the study of Number Theory. The famous Dirichlet theorem (see,
for instance, [1] or [5]) says that the arithmetic progression contains infinitely many primes if the first term and the
common difference are coprime. Recently, Hong and Loewy [6] investigated the eigen structure of Smith matrices
defined on a finite arithmetic progression and made some progress. Very recently, Green and Tao [3] have shown a
significant theorem stating that the set of primes contains arbitrarily long arithmetic progression.

On the other hand, Hanson [4] and Nair [7] got the upper bound and lower bound of lcm{1, . . . , n} respectively.
Farhi [2] obtained some non-trivial lower bounds for the least common multiple of finite arithmetic progressions.
Furthermore Farhi proposed the following conjecture:

Conjecture. [2, Conjecture 2.5] Assume u0, r, n ∈ Z
+, (u0, r) = 1 and uk = u0 + kr for 1 � k � n. Then Ln :=

lcm{u0, u1, . . . , un} � u0(r + 1)n.
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In this Note, we are interested in the least common multiple of finite arithmetic progressions. We exploit sharp
lower bound for the least common multiple of a arithmetic progression with n terms. In particular, we show that the
above conjecture is true. Under the condition r < n, we get an improved lower bound Ln � u0r(r + 1)n.

Throughout this Note, as usual, [x] will denote the integer part of a given real number x. We say that a real number
x is a multiple of a non-zero real number y if the quotient x

y
is an integer.

2. The main results

To show our main results, we first need a result of Farhi [2]. For the convenience to the readers, we here present
an alternative proof using integrals. Throughout this section, we let u0, r, n ∈ Z

+ with (u0, r) = 1, uk = u0 + kr for
1 � k � n and Ln = lcm{u0, u1, . . . , un}.

Lemma 2.1. For any positive integer n, Ln is a multiple of u0u1···un

n! .

Proof. We compute the integral
∫ 1

0 xu0/r−1(1 − x)n dx in two ways. First we use the binomial theorem to get that

1∫
0

xu0/r−1(1 − x)n dx =
1∫

0

xu0/r−1
n∑

k=0

(−1)k
(

n

k

)
xk dx =

n∑
k=0

(−1)k
(

n

k

)
r

uk

. (1)

Second by using partial integral we have

1∫
0

xu0/r−1(1 − x)n dx = r

u0

1∫
0

(1 − x)n dxu0/r = n

u0/r

1∫
0

xu0/r (1 − x)n−1 dx.

Continue to use partial integral for n − 1 times, we get

1∫
0

xu0/r−1(1 − x)n dx = n!
u0
r

(
u0
r

+ 1) · · · (u0
r

+ n − 1)

1∫
0

xu0/r+n−1 dx = n!rn+1

u0u1 · · ·un

. (2)

So by (1) and (2) we have
n∑

k=0

(−1)k
(

n

k

)
1

uk

= n!rn

u0u1 · · ·un

. (3)

By A denote the product of Ln and the left-hand side of (3). Clearly A is an integer. Multiplying both sides
of (3) by Ln, we have (n!rnLn)/(u0u1 · · ·un) = A ∈ Z. So Ln = (A/rn)(u0u1 · · ·un/n!). But (r, u0) = 1 implies that
(rn, u0u1 · · ·un) = 1. Thus An := A/rn is an integer. Then Ln = Anu0u1 · · ·un/n! as required. This completes the
proof of Lemma 2.1. �

Define Cn,k := uk ···un

(n−k)! for 0 � k � n. Then we have the following lemma.

Lemma 2.2. Let

kn := max

{
0,

[
n − u0

r + 1

]
+ 1

}
.

Then for any 0 � k � n, we have Cn,k � Cn,kn .

Proof. By the definition, we find the following relation

Cn,k = Cn,k+1 · uk

n − k
(4)

for all 0 � k � n − 1. Let first u0 > n. Then kn = 0. Since uk > u0 and n > n − k, we have uk

n−k
> 1 for all 0 � k �

n − 1. This implies immediately that Cn,0 > Cn,1 > · · · > Cn,n. Thus Lemma 2.2 is true if n < u0.
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Now let u0 � n. It is easy to see that uk

n−k
is increasing as k increases. Note that u0/n � 1, un−1/(n − (n − 1)) =

un−1 > 1. Then there must be an integer l with 0 � l � n − 2 such that
ul

n − l
� 1 and

ul+1

n − (l + 1)
> 1. (5)

So by (4) and (5) we obtain

Cn,0 < · · · < Cn,l � Cn,l+1 > · · · > Cn,n. (6)

On the other hand, from (5) we derive that

n − u0

r + 1
− 1 < l � n − u0

r + 1
⇒ l =

[
n − u0

r + 1

]
.

Since n � u0, l � 0. Thus kn = l + 1. Then by (6) we know that Lemma 2.2 holds if n � u0. So Lemma 2.2 is
proved. �

For any integer 0 � k � n, define Ln,k := lcm{uk, . . . , un}. Then Ln = Ln,0. By Lemma 2.1 we have

Ln,k = An,k

ukuk+1 · · ·un

(n − k)! = An,kCn,k (7)

with An,k ∈ Z
+. It is obvious that Ln is a multiple of Ln,k for all 0 � k � n. Hence for all 0 � k � n, by (7) we have

Ln � Ln,k � Cn,k. Particularly Ln � Cn,kn .
We can now prove the first main result:

Theorem 2.3. Let Cn,k and kn be defined as above. Then Cn,kn � u0(r + 1)n. Consequently we have Ln � u0(r + 1)n.

Proof. We use induction on n to prove that Cn,kn � u0(r + 1)n. First if n � u0, then by Lemma 2.2 we have

Cn,kn � Cn,0 = u0u1 · · ·un

n! = u0
u1

1

u2

2
· · · un

n
= u0(u0 + r)

(
u0

2
+ r

)
· · ·

(
u0

n
+ r

)
� u0(r + 1)n.

Thus the conclusion is true for n = 1 since u0 � 1.
Assume that the claim holds for the case n. In what follows we prove that the claim is true for the case n + 1.

By the proof above, we may let n > u0. Evidently we have kn � kn+1 � kn + 1. So we can divide the proof into the
following two cases:

Case 1: kn+1 = kn. Then we have

kn =
[
n − u0

r + 1

]
+ 1 =

[
n + 1 − u0

r + 1

]
+ 1.

Hence we have

n + 1 − u0

r + 1
< kn. (8)

Then

Cn+1,kn+1 = Cn+1,kn = ukn · · ·unun+1

(n + 1 − kn)! = Cn,kn · un+1

n + 1 − kn

, (9)

By (8), we have

un+1 − (r + 1)(n + 1 − kn) = u0 + (n + 1)r − (n + 1)(r + 1) + kn(r + 1) = u0 − (n + 1) + kn(r + 1) > 0.

So un+1
n+1−kn

� r + 1. But the induction hypothesis tells us Cn,kn � u0(r + 1)n. Then by (9) we get Cn+1,kn+1 �
u0(r + 1)n+1 as required.

Case 2: kn+1 = kn + 1. Then we have kn = kn+1 − 1 = [n+1−u0
r+1 ]. Thus

kn � n + 1 − u0
. (10)
r + 1
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So we have

Cn+1,kn+1 = Cn+1,kn+1 = ukn+1 · · ·unun+1

((n + 1) − (kn + 1))! = Cn,kn · un+1

ukn

. (11)

By (10) we have

un+1 − (r + 1)ukn = u0 + (n + 1)r − (r + 1)(u0 + knr) = u0 + (n + 1)r − (r + 1)u0 − knr(r + 1)

� nr + r − u0r − r(n + 1 − u0) = 0.

This implies that un+1
ukn

� r + 1. Then the desired result Cn+1,kn+1 � u0(r + 1)n+1 follows immediately from (11) and
the induction hypothesis. This completes the proof of the claim for case n + 1. So Theorem 2.3 is proved. �

By Theorem 2.3, we know that Farhi’s conjecture is true.
If we exploit the term An,k in the identity (7), then we can improve the lower bound under certain condition as the

following theorem shows.

Theorem 2.4. Let r < n. Then we have Ln � u0r(r + 1)n.

Proof. Letting k = kn in (7) gives us that

(n − kn)! · Ln,kn = An,kn · uknukn+1 · · ·un. (12)

Suppose that r � n − kn. Then r | (n − kn)!. Since (r, u0) = 1, we have (r, uknukn+1 · · ·un) = 1. So from (12) we
deduce that r | An,kn . Hence An,kn � r and so Ln,kn = An,knCn,kn � u0r(r + 1)n. Then the conclusion of Theorem 2.4
follows. Thus to prove Theorem 2.4, we need only to prove that r � n − kn which will be done in the following.

If u0 > n, then kn = 0 and n − kn = n > r . If u0 = n, then kn = 1 and n − kn = n − 1 � r . If u0 < n, then we
consider the following three cases:

Case 1: r < u0 < n. Then kn = [n−u0
r+1 ] + 1. So we have r + kn � r + n−u0

r+1 + 1 � (r+1)u0+n−u0
r+1 < n. Thus we have

r < n − kn as required.
Case 2: u0 < r < 2r � n. Then r � 2 and n � 4. Hence kn � n−u0

r+1 + 1 � n−1
3 + 1 � n

2 . It follows that r � n/2 �
n − kn as required.

Case 3: u0 < r < n < 2r . Then kn � n−u0
r+1 + 1 < 2r−1

r+1 + 1 = 3 − 3
r+1 < 3. Since kn � 1, kn must be 1 or 2. If

kn = 1, then r � n − 1 = n − kn as desired. If kn = 2, then r �= n − 1. Otherwise we have r = n − 1 which means

kn =
[

n − u0

n − 1 + 1

]
+ 1 = 1.

This is impossible. So we have r � n − 2 = n − kn as required.
The proof of Theorem 2.4 is complete. �

Remark. We point out that the conclusion of Theorem 2.4 may be false if the restricted condition r < n does not hold.
For example, let u0 = 1, r = n = 2. Then Ln = lcm{1,3,5} = 15. But u0r(r +1)n = 18. So we have Ln < u0r(r +1)n.
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