Lower bounds for the least common multiple of finite arithmetic progressions ${ }^{\text {tr }}$

Shaofang Hong, Weiduan Feng
Mathematical College, Sichuan University, Chengdu 610064, P.R. China
Received 14 September 2006; accepted 27 October 2006
Available online 1 December 2006
Presented by Christophe Soulé

Abstract

Let u_{0}, r and n be positive integers such that $\left(u_{0}, r\right)=1$. Let $u_{k}=u_{0}+k r$ for $1 \leqslant k \leqslant n$. We prove that $L_{n}:=$ $\operatorname{lcm}\left\{u_{0}, u_{1}, \ldots, u_{n}\right\} \geqslant u_{0}(r+1)^{n}$ which confirms Farhi's conjecture (2005). Further we show that if $r<n$, then $L_{n} \geqslant u_{0} r(r+1)^{n}$. To cite this article: S. Hong, W. Feng, C. R. Acad. Sci. Paris, Ser. I 343 (2006). © 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Minoration du plus petit commun multiple d'une progression arithmétique finie. Soit u_{0}, r et n des entiers positifs tels que $\left(u_{0}, r\right)=1$, posons $u_{k}=u_{0}+k r$ pour $1 \leqslant k \leqslant n$. Nous démontrons $L_{n}:=\operatorname{ppcm}\left(u_{0}, u_{1}, \ldots, u_{n}\right) \geqslant u_{0}(r+1)^{n}$, ce qui confirme la conjecture de Fahri (2005). De plus, nous montrons que si $r<n$ alors $L_{n} \geqslant u_{0} r(r+1)^{n}$. Pour citer cet article : S. Hong, W. Feng, C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Arithmetic progression is a basic subject in the study of Number Theory. The famous Dirichlet theorem (see, for instance, [1] or [5]) says that the arithmetic progression contains infinitely many primes if the first term and the common difference are coprime. Recently, Hong and Loewy [6] investigated the eigen structure of Smith matrices defined on a finite arithmetic progression and made some progress. Very recently, Green and Tao [3] have shown a significant theorem stating that the set of primes contains arbitrarily long arithmetic progression.

On the other hand, Hanson [4] and Nair [7] got the upper bound and lower bound of $\operatorname{lcm}\{1, \ldots, n\}$ respectively. Farhi [2] obtained some non-trivial lower bounds for the least common multiple of finite arithmetic progressions. Furthermore Farhi proposed the following conjecture:

Conjecture. [2, Conjecture 2.5] Assume $u_{0}, r, n \in \mathbb{Z}^{+},\left(u_{0}, r\right)=1$ and $u_{k}=u_{0}+k r$ for $1 \leqslant k \leqslant n$. Then $L_{n}:=$ $\operatorname{lcm}\left\{u_{0}, u_{1}, \ldots, u_{n}\right\} \geqslant u_{0}(r+1)^{n}$.

[^0]In this Note, we are interested in the least common multiple of finite arithmetic progressions. We exploit sharp lower bound for the least common multiple of a arithmetic progression with n terms. In particular, we show that the above conjecture is true. Under the condition $r<n$, we get an improved lower bound $L_{n} \geqslant u_{0} r(r+1)^{n}$.

Throughout this Note, as usual, $[x]$ will denote the integer part of a given real number x. We say that a real number x is a multiple of a non-zero real number y if the quotient $\frac{x}{y}$ is an integer.

2. The main results

To show our main results, we first need a result of Farhi [2]. For the convenience to the readers, we here present an alternative proof using integrals. Throughout this section, we let $u_{0}, r, n \in \mathbb{Z}^{+}$with $\left(u_{0}, r\right)=1, u_{k}=u_{0}+k r$ for $1 \leqslant k \leqslant n$ and $L_{n}=\operatorname{lcm}\left\{u_{0}, u_{1}, \ldots, u_{n}\right\}$.

Lemma 2.1. For any positive integer n, L_{n} is a multiple of $\frac{u_{0} u_{1} \cdots u_{n}}{n!}$.
Proof. We compute the integral $\int_{0}^{1} x^{u_{0} / r-1}(1-x)^{n} \mathrm{~d} x$ in two ways. First we use the binomial theorem to get that

$$
\begin{equation*}
\int_{0}^{1} x^{u_{0} / r-1}(1-x)^{n} \mathrm{~d} x=\int_{0}^{1} x^{u_{0} / r-1} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} x^{k} \mathrm{~d} x=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{r}{u_{k}} . \tag{1}
\end{equation*}
$$

Second by using partial integral we have

$$
\int_{0}^{1} x^{u_{0} / r-1}(1-x)^{n} \mathrm{~d} x=\frac{r}{u_{0}} \int_{0}^{1}(1-x)^{n} \mathrm{~d} x^{u_{0} / r}=\frac{n}{u_{0} / r} \int_{0}^{1} x^{u_{0} / r}(1-x)^{n-1} \mathrm{~d} x .
$$

Continue to use partial integral for $n-1$ times, we get

$$
\begin{equation*}
\int_{0}^{1} x^{u_{0} / r-1}(1-x)^{n} \mathrm{~d} x=\frac{n!}{\frac{u_{0}}{r}\left(\frac{u_{0}}{r}+1\right) \cdots\left(\frac{u_{0}}{r}+n-1\right)} \int_{0}^{1} x^{u_{0} / r+n-1} \mathrm{~d} x=\frac{n!r^{n+1}}{u_{0} u_{1} \cdots u_{n}} \tag{2}
\end{equation*}
$$

So by (1) and (2) we have

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{1}{u_{k}}=\frac{n!r^{n}}{u_{0} u_{1} \cdots u_{n}} \tag{3}
\end{equation*}
$$

By A denote the product of L_{n} and the left-hand side of (3). Clearly A is an integer. Multiplying both sides of (3) by L_{n}, we have $\left(n!r^{n} L_{n}\right) /\left(u_{0} u_{1} \cdots u_{n}\right)=A \in \mathbb{Z}$. So $L_{n}=\left(A / r^{n}\right)\left(u_{0} u_{1} \cdots u_{n} / n!\right)$. But ($\left.r, u_{0}\right)=1$ implies that $\left(r^{n}, u_{0} u_{1} \cdots u_{n}\right)=1$. Thus $A_{n}:=A / r^{n}$ is an integer. Then $L_{n}=A_{n} u_{0} u_{1} \cdots u_{n} / n!$ as required. This completes the proof of Lemma 2.1.

Define $C_{n, k}:=\frac{u_{k} \cdots u_{n}}{(n-k)!}$ for $0 \leqslant k \leqslant n$. Then we have the following lemma.

Lemma 2.2. Let

$$
k_{n}:=\max \left\{0,\left[\frac{n-u_{0}}{r+1}\right]+1\right\} .
$$

Then for any $0 \leqslant k \leqslant n$, we have $C_{n, k} \leqslant C_{n, k_{n}}$.
Proof. By the definition, we find the following relation

$$
\begin{equation*}
C_{n, k}=C_{n, k+1} \cdot \frac{u_{k}}{n-k} \tag{4}
\end{equation*}
$$

for all $0 \leqslant k \leqslant n-1$. Let first $u_{0}>n$. Then $k_{n}=0$. Since $u_{k}>u_{0}$ and $n>n-k$, we have $\frac{u_{k}}{n-k}>1$ for all $0 \leqslant k \leqslant$ $n-1$. This implies immediately that $C_{n, 0}>C_{n, 1}>\cdots>C_{n, n}$. Thus Lemma 2.2 is true if $n<u_{0}$.

Now let $u_{0} \leqslant n$. It is easy to see that $\frac{u_{k}}{n-k}$ is increasing as k increases. Note that $u_{0} / n \leqslant 1, u_{n-1} /(n-(n-1))=$ $u_{n-1}>1$. Then there must be an integer l with $0 \leqslant l \leqslant n-2$ such that

$$
\begin{equation*}
\frac{u_{l}}{n-l} \leqslant 1 \quad \text { and } \quad \frac{u_{l+1}}{n-(l+1)}>1 . \tag{5}
\end{equation*}
$$

So by (4) and (5) we obtain

$$
\begin{equation*}
C_{n, 0}<\cdots<C_{n, l} \leqslant C_{n, l+1}>\cdots>C_{n, n} \tag{6}
\end{equation*}
$$

On the other hand, from (5) we derive that

$$
\frac{n-u_{0}}{r+1}-1<l \leqslant \frac{n-u_{0}}{r+1} \Rightarrow l=\left[\frac{n-u_{0}}{r+1}\right] .
$$

Since $n \geqslant u_{0}, l \geqslant 0$. Thus $k_{n}=l+1$. Then by (6) we know that Lemma 2.2 holds if $n \geqslant u_{0}$. So Lemma 2.2 is proved.

For any integer $0 \leqslant k \leqslant n$, define $L_{n, k}:=\operatorname{lcm}\left\{u_{k}, \ldots, u_{n}\right\}$. Then $L_{n}=L_{n, 0}$. By Lemma 2.1 we have

$$
\begin{equation*}
L_{n, k}=A_{n, k} \frac{u_{k} u_{k+1} \cdots u_{n}}{(n-k)!}=A_{n, k} C_{n, k} \tag{7}
\end{equation*}
$$

with $A_{n, k} \in \mathbb{Z}^{+}$. It is obvious that L_{n} is a multiple of $L_{n, k}$ for all $0 \leqslant k \leqslant n$. Hence for all $0 \leqslant k \leqslant n$, by (7) we have $L_{n} \geqslant L_{n, k} \geqslant C_{n, k}$. Particularly $L_{n} \geqslant C_{n, k_{n}}$.

We can now prove the first main result:
Theorem 2.3. Let $C_{n, k}$ and k_{n} be defined as above. Then $C_{n, k_{n}} \geqslant u_{0}(r+1)^{n}$. Consequently we have $L_{n} \geqslant u_{0}(r+1)^{n}$.
Proof. We use induction on n to prove that $C_{n, k_{n}} \geqslant u_{0}(r+1)^{n}$. First if $n \leqslant u_{0}$, then by Lemma 2.2 we have

$$
C_{n, k_{n}} \geqslant C_{n, 0}=\frac{u_{0} u_{1} \cdots u_{n}}{n!}=u_{0} \frac{u_{1}}{1} \frac{u_{2}}{2} \cdots \frac{u_{n}}{n}=u_{0}\left(u_{0}+r\right)\left(\frac{u_{0}}{2}+r\right) \cdots\left(\frac{u_{0}}{n}+r\right) \geqslant u_{0}(r+1)^{n} .
$$

Thus the conclusion is true for $n=1$ since $u_{0} \geqslant 1$.
Assume that the claim holds for the case n. In what follows we prove that the claim is true for the case $n+1$. By the proof above, we may let $n>u_{0}$. Evidently we have $k_{n} \leqslant k_{n+1} \leqslant k_{n}+1$. So we can divide the proof into the following two cases:

Case 1: $k_{n+1}=k_{n}$. Then we have

$$
k_{n}=\left[\frac{n-u_{0}}{r+1}\right]+1=\left[\frac{n+1-u_{0}}{r+1}\right]+1 .
$$

Hence we have

$$
\begin{equation*}
\frac{n+1-u_{0}}{r+1}<k_{n} \tag{8}
\end{equation*}
$$

Then

$$
\begin{equation*}
C_{n+1, k_{n+1}}=C_{n+1, k_{n}}=\frac{u_{k_{n}} \cdots u_{n} u_{n+1}}{\left(n+1-k_{n}\right)!}=C_{n, k_{n}} \cdot \frac{u_{n+1}}{n+1-k_{n}}, \tag{9}
\end{equation*}
$$

By (8), we have

$$
u_{n+1}-(r+1)\left(n+1-k_{n}\right)=u_{0}+(n+1) r-(n+1)(r+1)+k_{n}(r+1)=u_{0}-(n+1)+k_{n}(r+1)>0 .
$$

So $\frac{u_{n+1}}{n+1-k_{n}} \geqslant r+1$. But the induction hypothesis tells us $C_{n, k_{n}} \geqslant u_{0}(r+1)^{n}$. Then by (9) we get $C_{n+1, k_{n+1}} \geqslant$ $u_{0}(r+1)^{n+1}$ as required.

Case 2: $k_{n+1}=k_{n}+1$. Then we have $k_{n}=k_{n+1}-1=\left[\frac{n+1-u_{0}}{r+1}\right]$. Thus

$$
\begin{equation*}
k_{n} \leqslant \frac{n+1-u_{0}}{r+1} . \tag{10}
\end{equation*}
$$

So we have

$$
\begin{equation*}
C_{n+1, k_{n+1}}=C_{n+1, k_{n}+1}=\frac{u_{k_{n}+1} \cdots u_{n} u_{n+1}}{\left((n+1)-\left(k_{n}+1\right)\right)!}=C_{n, k_{n}} \cdot \frac{u_{n+1}}{u_{k_{n}}} . \tag{11}
\end{equation*}
$$

By (10) we have

$$
\begin{aligned}
u_{n+1}-(r+1) u_{k_{n}} & =u_{0}+(n+1) r-(r+1)\left(u_{0}+k_{n} r\right)=u_{0}+(n+1) r-(r+1) u_{0}-k_{n} r(r+1) \\
& \geqslant n r+r-u_{0} r-r\left(n+1-u_{0}\right)=0 .
\end{aligned}
$$

This implies that $\frac{u_{n+1}}{u_{k n}} \geqslant r+1$. Then the desired result $C_{n+1, k_{n+1}} \geqslant u_{0}(r+1)^{n+1}$ follows immediately from (11) and the induction hypothesis. This completes the proof of the claim for case $n+1$. So Theorem 2.3 is proved.

By Theorem 2.3, we know that Farhi's conjecture is true.
If we exploit the term $A_{n, k}$ in the identity (7), then we can improve the lower bound under certain condition as the following theorem shows.

Theorem 2.4. Let $r<n$. Then we have $L_{n} \geqslant u_{0} r(r+1)^{n}$.
Proof. Letting $k=k_{n}$ in (7) gives us that

$$
\begin{equation*}
\left(n-k_{n}\right)!\cdot L_{n, k_{n}}=A_{n, k_{n}} \cdot u_{k_{n}} u_{k_{n}+1} \cdots u_{n} . \tag{12}
\end{equation*}
$$

Suppose that $r \leqslant n-k_{n}$. Then $r \mid\left(n-k_{n}\right)$!. Since $\left(r, u_{0}\right)=1$, we have $\left(r, u_{k_{n}} u_{k_{n}+1} \cdots u_{n}\right)=1$. So from (12) we deduce that $r \mid A_{n, k_{n}}$. Hence $A_{n, k_{n}} \geqslant r$ and so $L_{n, k_{n}}=A_{n, k_{n}} C_{n, k_{n}} \geqslant u_{0} r(r+1)^{n}$. Then the conclusion of Theorem 2.4 follows. Thus to prove Theorem 2.4, we need only to prove that $r \leqslant n-k_{n}$ which will be done in the following.

If $u_{0}>n$, then $k_{n}=0$ and $n-k_{n}=n>r$. If $u_{0}=n$, then $k_{n}=1$ and $n-k_{n}=n-1 \geqslant r$. If $u_{0}<n$, then we consider the following three cases:

Case 1: $r<u_{0}<n$. Then $k_{n}=\left[\frac{n-u_{0}}{r+1}\right]+1$. So we have $r+k_{n} \leqslant r+\frac{n-u_{0}}{r+1}+1 \leqslant \frac{(r+1) u_{0}+n-u_{0}}{r+1}<n$. Thus we have $r<n-k_{n}$ as required.

Case 2: $u_{0}<r<2 r \leqslant n$. Then $r \geqslant 2$ and $n \geqslant 4$. Hence $k_{n} \leqslant \frac{n-u_{0}}{r+1}+1 \leqslant \frac{n-1}{3}+1 \leqslant \frac{n}{2}$. It follows that $r \leqslant n / 2 \leqslant$ $n-k_{n}$ as required.

Case 3: $u_{0}<r<n<2 r$. Then $k_{n} \leqslant \frac{n-u_{0}}{r+1}+1<\frac{2 r-1}{r+1}+1=3-\frac{3}{r+1}<3$. Since $k_{n} \geqslant 1, k_{n}$ must be 1 or 2 . If $k_{n}=1$, then $r \leqslant n-1=n-k_{n}$ as desired. If $k_{n}=2$, then $r \neq n-1$. Otherwise we have $r=n-1$ which means

$$
k_{n}=\left[\frac{n-u_{0}}{n-1+1}\right]+1=1 .
$$

This is impossible. So we have $r \leqslant n-2=n-k_{n}$ as required.
The proof of Theorem 2.4 is complete.
Remark. We point out that the conclusion of Theorem 2.4 may be false if the restricted condition $r<n$ does not hold. For example, let $u_{0}=1, r=n=2$. Then $L_{n}=\operatorname{lcm}\{1,3,5\}=15$. But $u_{0} r(r+1)^{n}=18$. So we have $L_{n}<u_{0} r(r+1)^{n}$.

References

[1] T.M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[2] B. Farhi, Minoration non triviales du plus petit commun multiple de certaines suites finies d'entiers, C. R. Acad. Sci. Paris, Ser. I 341 (2005) 469-474.
[3] B. Green, T. Tao, The primes contain arbitrarily long arithmetic progression, Ann. Math., in press.
[4] D. Hanson, On the product of the primes, Canad. Math. Bull. 15 (1972) 33-37.
[5] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, fourth ed., Oxford University Press, London, 1960.
[6] S. Hong, R. Loewy, Asymptotic behavior of eigenvalues of greatest common divisor matrices, Glasgow Math. J. 46 (2004) $551-569$.
[7] M. Nair, On Chebyshev-type inequalities for primes, Amer. Math. Monthly 89 (1982) 126-129.

[^0]: *. Research is partially supported by SRF for ROCS, SEM.
 E-mail addresses: s-f.hong@tom.com, hongsf02@yahoo.com (S. Hong), d.d.feng@163.com (W. Feng).

