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Abstract

In this Note, we obtain Einstein solvmanifolds using Abelian extension of two-step nilpotent Lie algebras associated with graphs.
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Résumé

Solvariétés d’Einstein et graphes. Dans cette Note, nous obtenons des solvariétés d’Einstein par extension abélienne des
algèbres de Lie nilpotentes de rang deux associées à des graphes. Pour citer cet article : H.-R. Fanaï, C. R. Acad. Sci. Paris, Ser. I
344 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Our aim in this Note is the construction of examples of homogeneous Einstein manifolds of negative scalar curva-
ture. The classical examples of Einstein metrics of negative scalar curvature are the symmetric spaces of non-compact
type. A number of other examples are known, e.g. [1,3–5,7,8]. A Riemannian solvmanifold is a simply connected
solvable Lie group S together with a left invariant Riemannian metric g. All known examples of homogeneous Ein-
stein manifolds of negative scalar curvature are isometric to Riemannian solvmanifolds. In these examples, such a
solvable Lie group is a semi-direct product of an Abelian group A with a nilpotent normal subgroup N , the nilradical.
We consider the class of solvmanifolds for which N is two-step nilpotent associated with a graph as introduced in [2],
and A is one-dimensional. The left invariant Riemannian metric g on S defines an inner product 〈, 〉 on the Lie algebra
s of S. We will refer to a Lie algebra endowed with an inner product as a metric Lie algebra.

Recently in [2], two-step nilpotent Lie algebras attached to graphs are considered, where their group of Lie auto-
morphisms have been determined. In this Note, we are interested in such a (metric) two-step nilpotent Lie algebra n

and study whether there is a metric solvable extension of (n, 〈, 〉) which is Einstein. More precisely, we construct a
metric solvable Lie algebra (s = a ⊕ n, 〈, 〉) where a is one-dimensional orthogonal to n and the Lie bracket and the
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inner product on s restricted to n are those of n and describe necessary and sufficient conditions, in terms of the graph,
for the manifold s to be Einstein. This is contained in Theorem 1 in the last section. We recall the construction with
graphs introduced in [2] and some notations in the next section.

2. Preliminaries

Let (V ,E) be finite graph, where V is the set of vertices and E is the set of edges; equivalently E is a collection
of unordered pairs of distinct vertices; the unordered pairs will be written in the form αβ , where α,β ∈ V . Let v

be a vector space with V as a basis. Let z be the subspace of ∧2v the second exterior power of v, spanned by
{α ∧ β: α,β ∈ V,αβ ∈ E}. Let n = z ⊕ v. Stipulating the conditions that for any α,β ∈ V , [α,β] = α ∧ β if αβ ∈ E

and 0 otherwise, and [Z,X] = 0 for all Z ∈ z and X ∈ v determines a unique Lie algebra structure on n (see [2]).
Clearly n is a two-step nilpotent Lie algebra. Since without loss of generality, we can assume that the graph is a
connected graph hence the center of n is z = [n,n]. We endow n with an inner product 〈, 〉 such that z ⊥ v and two
orthonormal bases of v and z are V = {X1, . . . ,Xk} and {α ∧ β: α,β ∈ V,αβ ∈ E} respectively. Write the latter basis
of z as {Z1, . . . ,Zr} where each element of the basis is an edge XiXj with i < j . We can then define a linear map
J : z → so(v) by〈

J (Z)X,Y
〉 = 〈[X,Y ],Z〉

for X,Y ∈ v and Z ∈ z. The endomorphism J ∗J of z is represented by the r × r matrix (− tr(tJ (Zi)J (Zj )))i,j .
Consider now a metric solvable extension (s = RA ⊕ n, 〈, 〉) of n where the norm of A is one. We let f :=

adA :n → n. We can suppose that trf > 0. According to [5] and [6], if the solvmanifold is Einstein, then the matrix
representation of f in the above bases is in the following form:

f =
(

Br 0
0 Dk

)
.

In fact the solvmanifold s is Einstein if and only if there exists a (negative) constant μ such that we have the following
relations (see [5,6]):

(E1) −(trf )B + 1
4J ∗J = μ Idr ,

(E2) −(trf )D + 1
2

∑r
i=1 J 2(Zi) = μ Idk ,

(E3) J (B(·)) = J (·)D + DJ(·).

In the next section we consider these relations.

3. Result

Suppose that the relations (E1), (E2) and (E3) are satisfied for f (for a certain negative constant μ) and thus the
solvable extension is Einstein. We are looking for conditions imposed on the graph by these relations. The matrix
representation of J (Zi), 1 � i � r , is easy to obtain. If the edge Zi as a unordered pair is equal to XjXj ′ with
1 � j < j ′ � k, then the only nonzero entries of J (Zi) are J (Zi)jj ′ = −1 and J (Zi)j ′j = 1. Hence J ∗J = 2 Idr and
from (E1) we have B = λ Idr for a constant λ. On the other hand,

∑r
i=1 J 2(Zi) = −diag(d1, . . . , dk) where dj is

the degree of the vertex Xj , 1 � j � k. This implies from (E2) that D = diag(d ′
1, . . . , d

′
k) for certain constant d ′

j ,
1 � j � k, which are determined by the degrees of the vertices in the graph. As B is a multiple of identity and D

is diagonal, it follows from (E3) that d ′
i + d ′

j = λ whenever XiXj ∈ E. So the neighbors of a vertex have the same
degree. Hence if there is a walk in the graph from a vertex x to a vertex y which contains an even number of edges,
i.e. an even walk, then the vertices x and y have the same degree. Now define an equivalence relation on the vertices
in the following way: the vertex Xi is related to Xj iff there is an even walk in the graph from Xi to Xj . Consider the
equivalence classes. We have the following different cases:

Case 1. There is only one equivalence class. It means that the graph is a regular graph, i.e. all the vertices have the
same degree, say d . This is actually possible and we can construct a solvable extension of n which is Einstein. In fact
the number of edges is equal to r = kd

2 and it is easy to see that the relations (E1), (E2) and (E3) are satisfied with

B = 1 (1 + d) Idr , D = 1 (1 + d) Idk where trf =
√

(1 + d)(r + k ) and μ = − 1 − d .
trf 2 trf 2 2
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Case 2. There are more than two equivalence classes. This is actually impossible when the graph is connected,
because in this case, three different equivalence classes C1, C2 and C3 exist such that we have the vertices α ∈ C1,
β ∈ C2 with αβ ∈ E and the vertices α′ ∈ C2, β ′ ∈ C3 with α′β ′ ∈ E. If β = α′ then the vertices α and β ′ must be in
the same equivalence class, which is impossible. So β �= α′, as these vertices are in the same equivalence class C2,
there is an even walk in the graph from β to α′. This leads to an even walk from α to β ′, hence α and β ′ must be in
the same equivalence class, which is impossible. So the case 2 cannot occur.

Case 3. There are exactly two equivalence classes C and C′. As the graph is connected, there is at least one edge
between C and C′. Now apply the argument used in the case 2, to show that C must be an independent set in the
graph, i.e. no two vertices in C are adjacent. Similarly C′ is an independent set in the graph. This means that the graph
is a bipartite graph. Recall that a graph is bipartite if the set of vertices is the union of two disjoint sets such that each
edge consists of one vertex from each set. As all the vertices in an equivalence class have the same degree, we obtain
that the graph is a bipartite graph with partite sets C and C′ such that all the vertices in C have the same degree d

and all the vertices in C′ have the same degree d ′. This is actually possible and we can construct a solvable extension
of n which is Einstein. In fact it is easy to see that the relations (E1), (E2) and (E3) are satisfied with the following
data where we suppose that the vertices of the graph {X1, . . . ,Xk} are indexed such that the k1 first vertices are in
C (k1 = |C|) and the k2 last vertices are in C′ (k2 = |C′|, k = k1 + k2):

B = 1

trf

(
1 + d + d ′

2

)
Idr ,

D = diag(d ′
1, . . . , d

′
1, d

′
2, . . . , d

′
2),

trf =
√

k

2
(1 + d)(1 + d ′),

μ = −d − d ′ − 1

2

where in D, the diagonal entries d ′
1 (respectively d ′

2) are repeated k1 times (respectively k2 times) and

d ′
1 = 1 + d ′

2 trf
, d ′

2 = 1 + d

2 trf
.

Note that r = k1d = k2d
′. Hence we have shown the following result:

Theorem 1. Let (n, 〈, 〉) be a metric two-step nilpotent Lie algebra associated with a connected graph. Then there is
a metric solvable extension of n which is Einstein if and only if the graph is regular or a bipartite graph such that all
the vertices in each partite set have the same degree.
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