On the p-modular cohomology algebra of a finite p-group and a theorem of Serre

Koen Thas
Department of Pure Mathematics and Computer Algebra, Ghent University, Krijgslaan 281, S22, B-9000 Ghent, Belgium

Received 25 September 2006; accepted after revision 18 December 2006
Available online 26 March 2007
Presented by Jean-Pierre Serre

Abstract

We solve a problem posed by E. Yalçin on the cohomology length of a p-group P, by providing bounds for the group theoretical invariant $\mathbf{s}(P)$ when $p>2$. These bounds improve the known bounds on the cohomology length of p-groups for odd p. To cite this article: K. Thas, C. R. Acad. Sci. Paris, Ser. I 344 (2007). © 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

L' algèbre de cohomologie p-modulaire d'un \boldsymbol{p}-groupe fini. On obtient une borne pour la longueur cohomologique d'un p-groupe fini, $p>2$, résolvant ainsi un problème posé par E. Yalçin. Pour citer cet article : K. Thas, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Version française abrégée

Soient p un nombre premier et P un p-groupe fini. Notons

$$
H^{*}(P)=H^{*}\left(P, \mathbb{F}_{p}\right)=\bigoplus_{i=0}^{\infty} H^{i}\left(P, \mathbb{F}_{p}\right)
$$

l'algèbre de cohomologie de P à coefficients dans \mathbb{F}_{p}, et $\mathbf{c h l}(P)$ la longueur cohomologique de P (voir Section 1). Je me propose de démontrer le théorème suivant, qui résout un problème posé par E . Yalçin :

Théorème 0.1. Supposons que $|P|=p^{2 n+1}$ pour $p>2$ et $n \geqslant 3$. Si P est un p-groupe extra-spécial de type (d), on a

$$
p^{n-2}\left(p^{2}+(\sqrt{2}-1)-5 / 2\right)+1 \leqslant \boldsymbol{c h l}(P) \leqslant p^{n-2}\left(p^{2}+p-1\right)
$$

ou P_{2} est un p-groupe extra-spécial de type (d) avec $\left|P_{2}\right|=p^{5}$.

[^0]
1. Introduction and notation

Throughout this Note, for a finite p-group P,

$$
H^{*}(P)=H^{*}\left(P, \mathbb{F}_{p}\right)=\bigoplus_{i=0}^{\infty} H^{i}\left(P, \mathbb{F}_{p}\right)
$$

will denote the p-modular cohomology algebra of P.
A theorem of J.-P. Serre [7] states that if P is a p-group which is not elementary Abelian, then there exist non-zero elements $u_{1}, u_{2}, \ldots, u_{m} \in H^{1}\left(P, \mathbb{F}_{p}\right)$ such that

$$
\begin{equation*}
\prod_{i=1}^{m} u_{i}=0 \quad \text { if } p=2 \quad \text { and } \quad \prod_{i=1}^{m} \beta\left(u_{i}\right)=0 \quad \text { if } p>2 \tag{*}
\end{equation*}
$$

where β is the Bockstein homomorphism. The smallest integer m such that relation ($*$) is satisfied is referred to as the cohomology length of P, and is denoted by $\operatorname{chl}(P)$ throughout. Several papers on the calculation of the cohomology length have appeared; see, for instance, O. Kroll [3], J.-P. Serre [8], T. Okuyama and H. Sasaki [6], P.A. Minh [5] and E. Yalçin [10].

Suppose P is a p-group which is not p-central (not all elements of order p belong to the center). Define a representing set S of P as a subset that includes at least one non-central element from each maximal elementary Abelian subgroup of P. Then define $\mathbf{s}(P)$ as the minimum cardinality of a representing set in P.

Theorem 1.1. (E. Yalçin [10]) If P is an extra-special p-group which is not p-central, then $\mathbf{c h l}(P) \leqslant \mathbf{s}(P)$. Moreover, if P has a self-centralizing maximal elementary Abelian subgroup, then equality holds.

Theorem 1.1 was applied in [10] to prove the following theorem, which yields the best known bound for $\mathbf{c h l}(P)$:
Theorem 1.2. (E. Yalçin [10]) If P is a p-group and $k=\operatorname{dim}_{\mathbb{F}_{p}} H^{1}\left(P, \mathbb{F}_{p}\right)$, then

$$
\boldsymbol{\operatorname { c h l }}(P) \leqslant p+1
$$

if $k \leqslant 3$, and for $k>3$ we have

$$
\boldsymbol{\operatorname { c h l }}(P) \leqslant\left(p^{2}+p-1\right) p^{\lfloor k / 2\rfloor-2} .
$$

In this Note, we give an inductive bound when p is an odd prime which yields a new lower bound. As such, we solve Problem 7.2 of E. Yalçin [10].

The precise statement of the main result will be made in the next section.

2. Extra-special \boldsymbol{p}-groups and statement of the main result

Let P be an extra-special p-group, which in this Note we define by the following group extension:

$$
1 \mapsto \mathbb{Z} / p \mapsto P \mapsto V \mapsto 1,
$$

V being a vector space over \mathbb{F}_{p}. Put $k=\operatorname{dim}_{\mathbb{F}_{p}} V$.
If $P \cong P^{*} \times \mathbb{Z} / p$ for some subgroup $P^{*} \subset P$, then $\mathbf{c h l}(P)=\mathbf{c h l}\left(P^{*}\right)$ and $\mathbf{s}(P)=\mathbf{s}\left(P^{*}\right)$. Without loss of generality we suppose that P is not of this form, that is, P has no proper direct factors. Then, if P is represented by the extension class $[\alpha] \in H^{1}\left(V, \mathbb{F}_{p}\right)$, there exists a basis such that $[\alpha]$ is of one of the following forms (cf. P.A. Minh [5]):

$$
\begin{cases}\text { for } p=2 \text { and } k=2 n, & \text { (a) } X_{1} Y_{1}+X_{2} Y_{2}+\cdots+X_{n} Y_{n} \text { or } \\ \text { for } p=2 \text { and } k=2 n, & \text { (b) } X_{1}^{2}+Y_{1}^{2}+X_{1} Y_{1}+X_{2} Y_{2}+\cdots+X_{n} Y_{n} ; \\ \text { for } p=2 \text { and } k=2 n+1, & \text { (c) } X_{0}^{2}+X_{1} Y_{1}+X_{2} Y_{2}+\cdots+X_{n} Y_{n} \\ \text { for } p>2 \text { and } k=2 n, & \text { (d) } X_{1} Y_{1}+X_{2} Y_{2}+\cdots+X_{n} Y_{n} \text { or } \\ \text { for } p>2 \text { and } k=2 n, & \text { (e) } \beta\left(X_{1}\right)+X_{1} Y_{1}+X_{2} Y_{2}+\cdots+X_{n} Y_{n} ; \\ \text { for } p>2 \text { and } k=2 n+1, & \text { (f) } \beta\left(X_{0}\right)+X_{1} Y_{1}+X_{2} Y_{2}+\cdots+X_{n} Y_{n} .\end{cases}
$$

When P is an extra-special group of type (e) or (f), it is well known that $\mathbf{c h l}(P) \leqslant p$. In cases (a) and (d), $C_{P}(E)=E$ for any maximal elementary Abelian subgroup $E \leqslant P$, so that equality holds in Theorem 1.1. For case (a), E. Yalçin obtained the best possible bound in [10]. Theorem 1.2 represents a general bound which is valid for all cases. In that same paper, Problem 7.2 asks for a calculation of $\mathbf{s}(P)=\boldsymbol{c h l}(P)$ in terms of n and p for groups of type (d).

This calculation is the objective of the present note, so as to obtain at the same time a bound for $\operatorname{chl}(P)$ of such a group P, and more generally, of any p-group for odd p.

Theorem 2.1. Let P be an extra-special p-group of order $p^{2 n+1}$ where p is odd. If P is of type (d$)$, we have $p^{n-2}\left(p^{2}+\right.$ $(\sqrt{2}-1)-5 / 2)+1 \leqslant \boldsymbol{c h l}(P) \leqslant p^{n-2}\left(p^{2}+p-1\right)$. Moreover,

$$
p^{n-2}\left(\mathbf{c h l}\left(P_{2}\right)-1\right)+1 \leqslant \operatorname{chl}(P) \leqslant p^{n-2} \cdot \boldsymbol{\operatorname { c h l }}\left(P_{2}\right),
$$

where P_{2} is an extra-special p-group of type (d) with order p^{5}.
In the rest of this Note, we will only consider extra-special groups of type (d); if P is a p-group, p odd, which is not elementary Abelian and $k=\operatorname{dim}_{\mathbb{F}_{p}}\left(H^{1}\left(P, \mathbb{F}_{p}\right)\right) \in\{2 n, 2 n+1\}$, then P has a factor group P_{n} isomorphic to some group of type (d), (e) or (f). So $\boldsymbol{\operatorname { c h l }}(P) \leqslant \boldsymbol{c h l}\left(P_{n}\right)$.

3. Proof of the main result

Suppose $P=P_{n}$ is a group of type (d), and note that $\left|P_{n}\right|=p^{2 n+1}$. Suppose $\mathcal{W}=\mathcal{W}(2 n-1, p)$ is the variety in the $(2 n-1)$-dimensional projective space $\mathbf{P G}(2 n-1, p)$ over \mathbb{F}_{p} which is determined by the bilinear alternating form induced by the quadratic form displayed in (d) of the previous section. So \mathcal{W} is a 'non-singular symplectic polar space'. Define $\mathbf{s}(\mathcal{W})$ as the minimal cardinality of a set of points of $\mathbf{P G}(2 n-1, p)$ which meets every maximal totally isotropic subspace ('generator') of \mathcal{W}. Then it holds that $\mathbf{s}\left(P_{n}\right)=\mathbf{s}(\mathcal{W})$ [11]. Note that the Witt index of \mathcal{W} is n, so that $(n-1)$ is the dimension of a generator of \mathcal{W}. An easy counting argument ${ }^{1}$ shows that the number of points of such a set is at least $p^{n}+1$ [9], and in case of equality, one speaks of an 'ovoid' of $\mathcal{W}(2 n-1, p)$. More generally, if B is a point set of $\mathcal{W}(2 n-1, p)$ meeting each generator, call it a blocking set.

Theorem 3.1. (See, e.g., the survey paper [9] for (i) and [2] for (ii).)
(i) $\mathcal{W}(2 m+1, p)$ has no ovoids for $m \geqslant 1$.
(ii) $\mathbf{s}(\mathcal{W}(3, p)) \geqslant p^{2}+(\sqrt{2}-1) p-3 / 2$.

We need a good bound for the size of a blocking set of symplectic polar spaces, which we will try to obtain now.
Let $\mathcal{W}(2 r-1, p) \subset \mathcal{W}(2 n-1, p)$, where we assume $r \geqslant 2$ and $n \geqslant 3$. Suppose η is the symplectic polarity defined by $\mathcal{W}(2 n-1, p)$. Now let $\pi \subset \mathcal{W}(2 n-1, p)$ be a projective subspace of $\mathbf{P G}(2 n-1, p)$ of dimension $n-r-1$, such that $\mathcal{W}(2 r-1, p) \subset \pi^{\eta}(\mathcal{W}(2 r-1, p)$ has no point in common with $\pi)$. Suppose B is a blocking set of $\mathcal{W}(2 r-1, p)$. Define B^{*} as the set of points of $\mathcal{W}(2 n-1, p)$ which are on lines that contain a point of B and one of π, but not contained in π (B^{*} is a 'truncated cone' with base π and vertex B). Then one observes two facts:
(i) $\left|B^{*}\right|=\frac{p^{n-r}-1}{p-1}(p-1)|B|+|B|=|B| p^{n-r}$;
(ii) B^{*} contains at least one point of any generator of $\mathcal{W}(2 n-1, p)$.

Now put $2 r-1=3$, and consider a point x of $\mathcal{W}(3, p)$. Let y be a point of $\mathcal{W}(3, p)$ which is not collinear with x on $\mathcal{W}(3, p)$. For any point z of $\mathcal{W}(3, p)$, denote by z^{\perp} the set of points which are collinear with z on $\mathcal{W}(3, p)$ (including z). Also, if A is a point set of $\mathcal{W}(3, p)$, write A^{\perp} for $\cap_{a \in A} a^{\perp}$, and $A^{\perp \perp}$ for $\left(A^{\perp}\right)^{\perp}$. Then clearly

$$
B=\left(\left(x^{\perp} \backslash\{x, y\}^{\perp}\right) \cup\{x, y\}^{\perp \perp}\right) \backslash\{x\}
$$

[^1]is a blocking set of $\mathcal{W}(3, p)$ of size $p^{2}+p-1$. So we get
$$
\left|B^{*}\right|=p^{n-2}\left(p^{2}+p-1\right),
$$
and hence $\mathbf{s}(\mathcal{W}(2 n-1, p))$ is at most $p^{n-2} \cdot \mathbf{s}(\mathcal{W}(3, p))$. (Note that as thus we have obtained an alternative proof of a result of [10].)

Now suppose that for $k<n, k \in \mathbb{N} \backslash\{0,1\}, \mathbf{s}(\mathcal{W}(2 k-1, p)) \geqslant p^{k-2}(\mathbf{s}(\mathcal{W}(3, p))-1)+1$.
We will use this induction hypothesis to show that the inequality also holds for $k=n$. The following argument was first made by K. Metsch in a slightly more particular setting (cf. [4, p. 284]), but was never published.

Let B^{*} be a blocking set of $\mathcal{W}(2 n-1, p)$ which does not contain a blocking set of strictly smaller size. Then there is a generator of $\mathcal{W}(2 n-1, p)$ that meets B^{*} in a unique point x. Each of the $\alpha:=p^{n-1}+\cdots+p^{2}+p$ other points of this generator sees in its quotient a blocking set of a $\mathcal{W}(2 n-3, p)$, so besides x at least $\beta:=p^{n-3}(\mathbf{s}(\mathcal{W}(3, p))-1)$ further points. As every point of $B^{*} \backslash\{x\}$ is counted at most $\gamma:=p^{n-2}+\cdots+p+1$ times, we have $\left|B^{*} \backslash x\right| \geqslant \alpha \beta / \gamma$.

This proves the main result.
Note that the geometrical results of this section are still valid if we replace the field \mathbb{F}_{p} by \mathbb{F}_{q} when q is any odd prime power.

The minimal size of a blocking set of $\mathcal{W}(3,3)$, respectively $\mathcal{W}(3,5)$, equals 11 , respectively 29 | see $[1$, Remark 10]. So for these cases, we have $10 \times 3^{n-2}+1 \leqslant \mathbf{s}(\mathcal{W}(2 n-1,3)) \leqslant 11 \times 3^{n-2}$ and $28 \times 5^{n-2}+1 \leqslant$ $\mathbf{s}(\mathcal{W}(2 n-1,5)) \leqslant 29 \times 5^{n-2}$.

Acknowledgements

The author wishes to thank E. Yalçin for several helpful remarks on a first draft of the Note.

References

[1] J. Eisfeld, L. Storme, T. Szönyi, P. Sziklai, Covers and blocking sets of classical generalized quadrangles, in: Designs, Codes and Finite Geometries, Shanghai, 1999, Discrete Math. 238 (2001) 35-51.
[2] A. Klein, K. Metsch, New results on covers and partial spreads of polar spaces, Innov. Incidence Geom. 1 (2005) 19-34.
[3] O. Kroll, A representation theoretical proof of a theorem of Serre, Århus preprint, May 1986.
[4] K. Metsch, Small point sets that meet all generators of $W(2 n+1, p)$, Des. Codes Cryptogr. 31 (2004) 283-288.
[5] P.A. Minh, Serre's theorem on the cohomology algebra of a p-group, Bull. London Math. Soc. 30 (1998) 518-520.
[6] T. Okuyama, H. Sasaki, Evens' norm maps and Serre's theorem on the cohomology algebra of a p-group, Arch. Math. 54 (1990) $331-339$.
[7] J.-P. Serre, Sur la dimension cohomologique des groupes profinis, Topology 3 (1965) 413-420.
[8] J.-P. Serre, Une relation dans la cohomologie des p-groupes, C. R. Acad. Sci. Paris 304 (1987) 587-590.
[9] J.A. Thas, Ovoids, spreads and m-systems of finite classical polar spaces, in: Surveys in Combinatorics, Sussex, 2001, in: London Math. Soc. Lecture Note Series, vol. 288, Cambridge University Press, Cambridge, 2001, pp. 241-267.
[10] E. Yalçin, Set covering and Serre's theorem on the cohomology algebra of a p-group, J. Algebra 245 (2001) 50-67.
[11] E. Yalçin, Private communication, December 2006/January 2007.

[^0]: E-mail address: kthas@cage.UGent.be.

[^1]: ${ }^{1}$ Let S be a set of points of $\mathcal{W}(2 n-1, p)$ meeting every generator. Count in two ways the number of pairs (p, π), where $p \in S$, π is a generator and $p \in \pi$. Then $|S| \cdot($ number of generators containing $x) \geqslant$ (total number of generators) 1 .

