

Available online at www.sciencedirect.com

COMPTES RENDUS MATHEMATIQUE

C. R. Acad. Sci. Paris, Ser. I 344 (2007) 417-420

http://france.elsevier.com/direct/CRASS1/

Homological Algebra

On the *p*-modular cohomology algebra of a finite *p*-group and a theorem of Serre

Koen Thas

Department of Pure Mathematics and Computer Algebra, Ghent University, Krijgslaan 281, S22, B-9000 Ghent, Belgium

Received 25 September 2006; accepted after revision 18 December 2006

Available online 26 March 2007

Presented by Jean-Pierre Serre

Abstract

We solve a problem posed by E. Yalçin on the cohomology length of a *p*-group *P*, by providing bounds for the group theoretical invariant s(P) when p > 2. These bounds improve the known bounds on the cohomology length of *p*-groups for odd *p*. To cite this article: K. Thas, C. R. Acad. Sci. Paris, Ser. I 344 (2007).

© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

L' algèbre de cohomologie *p*-modulaire d'un *p*-groupe fini. On obtient une borne pour la longueur cohomologique d'un *p*-groupe fini, p > 2, résolvant ainsi un problème posé par E. Yalçin. *Pour citer cet article : K. Thas, C. R. Acad. Sci. Paris, Ser. I* 344 (2007).

© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Version française abrégée

Soient p un nombre premier et P un p-groupe fini. Notons

$$H^*(P) = H^*(P, \mathbb{F}_p) = \bigoplus_{i=0}^{\infty} H^i(P, \mathbb{F}_p)$$

l'algèbre de cohomologie de *P* à coefficients dans \mathbb{F}_p , et **chl**(*P*) la longueur cohomologique de *P* (voir Section 1). Je me propose de démontrer le théorème suivant, qui résout un problème posé par E. Yalçin :

Théorème 0.1. Supposons que $|P| = p^{2n+1}$ pour p > 2 et $n \ge 3$. Si P est un p-groupe extra-spécial de type (d), on a

$$p^{n-2}(p^2 + (\sqrt{2} - 1) - 5/2) + 1 \le \operatorname{chl}(P) \le p^{n-2}(p^2 + p - 1)$$

ou P_2 est un p-groupe extra-spécial de type (d) avec $|P_2| = p^5$.

E-mail address: kthas@cage.UGent.be.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences. doi:10.1016/j.crma.2007.01.003

1. Introduction and notation

Throughout this Note, for a finite p-group P,

$$H^*(P) = H^*(P, \mathbb{F}_p) = \bigoplus_{i=0}^{\infty} H^i(P, \mathbb{F}_p)$$

will denote the p-modular cohomology algebra of P.

A theorem of J.-P. Serre [7] states that if P is a p-group which is not elementary Abelian, then there exist non-zero elements $u_1, u_2, \ldots, u_m \in H^1(P, \mathbb{F}_p)$ such that

$$\prod_{i=1}^{m} u_i = 0 \quad \text{if } p = 2 \quad \text{and} \quad \prod_{i=1}^{m} \beta(u_i) = 0 \quad \text{if } p > 2, \tag{(*)}$$

where β is the Bockstein homomorphism. The smallest integer *m* such that relation (*) is satisfied is referred to as the *cohomology length* of *P*, and is denoted by **chl**(*P*) throughout. Several papers on the calculation of the cohomology length have appeared; see, for instance, O. Kroll [3], J.-P. Serre [8], T. Okuyama and H. Sasaki [6], P.A. Minh [5] and E. Yalçin [10].

Suppose *P* is a *p*-group which is not *p*-central (not all elements of order *p* belong to the center). Define a *representing set S* of *P* as a subset that includes at least one non-central element from each maximal elementary Abelian subgroup of *P*. Then define $\mathbf{s}(P)$ as the minimum cardinality of a representing set in *P*.

Theorem 1.1. (*E. Yalçin* [10]) If *P* is an extra-special *p*-group which is not *p*-central, then $chl(P) \leq s(P)$. Moreover, if *P* has a self-centralizing maximal elementary Abelian subgroup, then equality holds.

Theorem 1.1 was applied in [10] to prove the following theorem, which yields the best known bound for chl(P):

Theorem 1.2. (E. Yalçin [10]) If P is a p-group and $k = \dim_{\mathbb{F}_p} H^1(P, \mathbb{F}_p)$, then

 $chl(P) \leq p+1$

if $k \leq 3$ *, and for* k > 3 *we have*

 $\operatorname{chl}(P) \leq (p^2 + p - 1)p^{\lfloor k/2 \rfloor - 2}.$

In this Note, we give an inductive bound when p is an odd prime which yields a new lower bound. As such, we solve Problem 7.2 of E. Yalçin [10].

The precise statement of the main result will be made in the next section.

2. Extra-special *p*-groups and statement of the main result

Let *P* be an extra-special *p*-group, which in this Note we define by the following group extension:

$$1 \mapsto \mathbb{Z}/p \mapsto P \mapsto V \mapsto 1$$
,

V being a vector space over \mathbb{F}_p . Put $k = \dim_{\mathbb{F}_p} V$.

If $P \cong P^* \times \mathbb{Z}/p$ for some subgroup $P^* \subset P$, then $chl(P) = chl(P^*)$ and $s(P) = s(P^*)$. Without loss of generality we suppose that *P* is not of this form, that is, *P* has no proper direct factors. Then, if *P* is represented by the extension class $[\alpha] \in H^1(V, \mathbb{F}_p)$, there exists a basis such that $[\alpha]$ is of one of the following forms (cf. P.A. Minh [5]):

 $\begin{cases} \text{for } p = 2 \text{ and } k = 2n, & \text{(a) } X_1Y_1 + X_2Y_2 + \dots + X_nY_n \text{ or} \\ \text{for } p = 2 \text{ and } k = 2n, & \text{(b) } X_1^2 + Y_1^2 + X_1Y_1 + X_2Y_2 + \dots + X_nY_n; \\ \text{for } p = 2 \text{ and } k = 2n + 1, & \text{(c) } X_0^2 + X_1Y_1 + X_2Y_2 + \dots + X_nY_n; \\ \text{for } p > 2 \text{ and } k = 2n, & \text{(d) } X_1Y_1 + X_2Y_2 + \dots + X_nY_n \text{ or} \\ \text{for } p > 2 \text{ and } k = 2n, & \text{(e) } \beta(X_1) + X_1Y_1 + X_2Y_2 + \dots + X_nY_n; \\ \text{for } p > 2 \text{ and } k = 2n + 1, & \text{(f) } \beta(X_0) + X_1Y_1 + X_2Y_2 + \dots + X_nY_n. \end{cases}$

When *P* is an extra-special group of type (e) or (f), it is well known that $chl(P) \leq p$. In cases (a) and (d), $C_P(E) = E$ for any maximal elementary Abelian subgroup $E \leq P$, so that equality holds in Theorem 1.1. For case (a), E. Yalçin obtained the best possible bound in [10]. Theorem 1.2 represents a general bound which is valid for all cases. In that same paper, Problem 7.2 asks for a calculation of $\mathbf{s}(P) = chl(P)$ in terms of *n* and *p* for groups of type (d).

This calculation is the objective of the present note, so as to obtain at the same time a bound for chl(P) of such a group P, and more generally, of any p-group for odd p.

Theorem 2.1. Let P be an extra-special p-group of order p^{2n+1} where p is odd. If P is of type (d), we have $p^{n-2}(p^2 + (\sqrt{2}-1)-5/2) + 1 \leq \operatorname{chl}(P) \leq p^{n-2}(p^2 + p - 1)$. Moreover,

$$p^{n-2}(\operatorname{chl}(P_2)-1)+1 \leq \operatorname{chl}(P) \leq p^{n-2} \cdot \operatorname{chl}(P_2),$$

where P_2 is an extra-special p-group of type (d) with order p^5 .

In the rest of this Note, we will only consider extra-special groups of type (d); if *P* is a *p*-group, *p* odd, which is not elementary Abelian and $k = \dim_{\mathbb{F}_p}(H^1(P, \mathbb{F}_p)) \in \{2n, 2n+1\}$, then *P* has a factor group P_n isomorphic to some group of type (d), (e) or (f). So **chl**(*P*) \leq **chl**(P_n).

3. Proof of the main result

Suppose $P = P_n$ is a group of type (d), and note that $|P_n| = p^{2n+1}$. Suppose $\mathcal{W} = \mathcal{W}(2n - 1, p)$ is the variety in the (2n - 1)-dimensional projective space $\mathbf{PG}(2n - 1, p)$ over \mathbb{F}_p which is determined by the bilinear alternating form induced by the quadratic form displayed in (d) of the previous section. So \mathcal{W} is a 'non-singular symplectic polar space'. Define $\mathbf{s}(\mathcal{W})$ as the minimal cardinality of a set of points of $\mathbf{PG}(2n - 1, p)$ which meets every maximal totally isotropic subspace ('generator') of \mathcal{W} . Then it holds that $\mathbf{s}(P_n) = \mathbf{s}(\mathcal{W})$ [11]. Note that the Witt index of \mathcal{W} is n, so that (n - 1) is the dimension of a generator of \mathcal{W} . An easy counting argument¹ shows that the number of points of such a set is at least $p^n + 1$ [9], and in case of equality, one speaks of an 'ovoid' of $\mathcal{W}(2n - 1, p)$. More generally, if B is a point set of $\mathcal{W}(2n - 1, p)$ meeting each generator, call it a *blocking set*.

Theorem 3.1. (See, e.g., the survey paper [9] for (i) and [2] for (ii).)

(i) W(2m+1, p) has no ovoids for $m \ge 1$.

(ii)
$$\mathbf{s}(\mathcal{W}(3, p)) \ge p^2 + (\sqrt{2} - 1)p - 3/2$$
.

We need a good bound for the size of a blocking set of symplectic polar spaces, which we will try to obtain now. Let $W(2r-1, p) \subset W(2n-1, p)$, where we assume $r \ge 2$ and $n \ge 3$. Suppose η is the symplectic polarity defined by W(2n-1, p). Now let $\pi \subset W(2n-1, p)$ be a projective subspace of $\mathbf{PG}(2n-1, p)$ of dimension n-r-1, such that $W(2r-1, p) \subset \pi^{\eta}$ (W(2r-1, p) has no point in common with π). Suppose *B* is a blocking set of W(2r-1, p). Define B^* as the set of points of W(2n-1, p) which are on lines that contain a point of *B* and one of π , but not contained in π (B^* is a 'truncated cone' with base π and vertex *B*). Then one observes two facts:

- (i) $|B^*| = \frac{p^{n-r}-1}{p-1}(p-1)|B| + |B| = |B|p^{n-r};$
- (ii) B^* contains at least one point of any generator of W(2n 1, p).

Now put 2r - 1 = 3, and consider a point x of $\mathcal{W}(3, p)$. Let y be a point of $\mathcal{W}(3, p)$ which is not collinear with x on $\mathcal{W}(3, p)$. For any point z of $\mathcal{W}(3, p)$, denote by z^{\perp} the set of points which are collinear with z on $\mathcal{W}(3, p)$ (including z). Also, if A is a point set of $\mathcal{W}(3, p)$, write A^{\perp} for $\bigcap_{a \in A} a^{\perp}$, and $A^{\perp \perp}$ for $(A^{\perp})^{\perp}$. Then clearly

$$B = \left(\left(x^{\perp} \setminus \{x, y\}^{\perp} \right) \cup \{x, y\}^{\perp \perp} \right) \setminus \{x\}$$

¹ Let *S* be a set of points of $\mathcal{W}(2n-1, p)$ meeting every generator. Count in two ways the number of pairs (p, π) , where $p \in S$, π is a generator and $p \in \pi$. Then |S|-(number of generators containing x) \geq (total number of generators)·1.

is a blocking set of $\mathcal{W}(3, p)$ of size $p^2 + p - 1$. So we get

$$|B^*| = p^{n-2} (p^2 + p - 1),$$

and hence $\mathbf{s}(\mathcal{W}(2n-1, p))$ is at most $p^{n-2} \cdot \mathbf{s}(\mathcal{W}(3, p))$. (Note that as thus we have obtained an alternative proof of a result of [10].)

Now suppose that for $k < n, k \in \mathbb{N} \setminus \{0, 1\}$, $\mathbf{s}(\mathcal{W}(2k-1, p)) \ge p^{k-2}(\mathbf{s}(\mathcal{W}(3, p)) - 1) + 1$.

We will use this induction hypothesis to show that the inequality also holds for k = n. The following argument was first made by K. Metsch in a slightly more particular setting (cf. [4, p. 284]), but was never published.

Let B^* be a blocking set of $\mathcal{W}(2n-1, p)$ which does not contain a blocking set of strictly smaller size. Then there is a generator of $\mathcal{W}(2n-1, p)$ that meets B^* in a unique point x. Each of the $\alpha := p^{n-1} + \cdots + p^2 + p$ other points of this generator sees in its quotient a blocking set of a $\mathcal{W}(2n-3, p)$, so besides x at least $\beta := p^{n-3}(\mathbf{s}(\mathcal{W}(3, p)) - 1)$ further points. As every point of $B^* \setminus \{x\}$ is counted at most $\gamma := p^{n-2} + \cdots + p + 1$ times, we have $|B^* \setminus x| \ge \alpha\beta/\gamma$. This proves the main result

This proves the main result.

Note that the geometrical results of this section are still valid if we replace the field \mathbb{F}_p by \mathbb{F}_q when q is any odd prime power.

The minimal size of a blocking set of $\mathcal{W}(3,3)$, respectively $\mathcal{W}(3,5)$, equals 11, respectively 29 | see [1, Remark 10]. So for these cases, we have $10 \times 3^{n-2} + 1 \leq \mathbf{s}(\mathcal{W}(2n-1,3)) \leq 11 \times 3^{n-2}$ and $28 \times 5^{n-2} + 1 \leq \mathbf{s}(\mathcal{W}(2n-1,5)) \leq 29 \times 5^{n-2}$.

Acknowledgements

The author wishes to thank E. Yalçin for several helpful remarks on a first draft of the Note.

References

- J. Eisfeld, L. Storme, T. Szönyi, P. Sziklai, Covers and blocking sets of classical generalized quadrangles, in: Designs, Codes and Finite Geometries, Shanghai, 1999, Discrete Math. 238 (2001) 35–51.
- [2] A. Klein, K. Metsch, New results on covers and partial spreads of polar spaces, Innov. Incidence Geom. 1 (2005) 19-34.
- [3] O. Kroll, A representation theoretical proof of a theorem of Serre, Århus preprint, May 1986.
- [4] K. Metsch, Small point sets that meet all generators of W(2n + 1, p), Des. Codes Cryptogr. 31 (2004) 283–288.
- [5] P.A. Minh, Serre's theorem on the cohomology algebra of a p-group, Bull. London Math. Soc. 30 (1998) 518–520.
- [6] T. Okuyama, H. Sasaki, Evens' norm maps and Serre's theorem on the cohomology algebra of a p-group, Arch. Math. 54 (1990) 331–339.
- [7] J.-P. Serre, Sur la dimension cohomologique des groupes profinis, Topology 3 (1965) 413-420.
- [8] J.-P. Serre, Une relation dans la cohomologie des p-groupes, C. R. Acad. Sci. Paris 304 (1987) 587-590.
- [9] J.A. Thas, Ovoids, spreads and *m*-systems of finite classical polar spaces, in: Surveys in Combinatorics, Sussex, 2001, in: London Math. Soc. Lecture Note Series, vol. 288, Cambridge University Press, Cambridge, 2001, pp. 241–267.
- [10] E. Yalçin, Set covering and Serre's theorem on the cohomology algebra of a p-group, J. Algebra 245 (2001) 50–67.
- [11] E. Yalçin, Private communication, December 2006/January 2007.