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Abstract

For the KZK equation (ut − uux − βuxx)x − γ�yu = 0 in the class of x-periodic and of zero mean value functions we have
analysed the following: the derivation from Navier–Stokes system and the validity of its approximation, the existence, uniqueness
and stability of the solution. The solution is proved to be global in time for sufficient small initial data with β > 0 and to have a
blow-up if β = 0. To cite this article: A. Rozanova, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Équation de Khokhlov–Zabolotskaya–Kuznetsov. Pour l’équation KZK (ut − uux − βuxx)x − γ�yu = 0 dans la classe des
fonctions périodiques en x et de moyennes nulles, on a étudié la dérivation à partir du système de Navier–Stokes isentropique et
la validation de son approximation, l’existence, l’unicité et la stabilité de la solution. On a prouvé que la solution est globale en
temps pour des données initiales suffisement petites avec β > 0 et que la solution présente une onde de choc si β = 0. Pour citer
cet article : A. Rozanova, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

On considère l’équation

(ut − uux − βuxx)x − γ�yu = 0, (x, y) ∈Rx/(LZ) ×Rn−1
y . (1)

Elle porte le nom de KZK (Khokhlov–Zabolotskaya–Kuznetsov) et a été introduite pour étudier des problèmes
d’acoustique non linéaire [2] comme approximation d’une équation de Navier–Stokes isentropique

∂tρε + ∇(ρεuε) = 0, ρ
[
∂tuε + (uε · ∇)uε

] = −∇p(ρε) + εν�uε, (2)

avec équation d’état approchée ρε = ρ0 + ερ̃ε ,

p = p(ρε) = c2ερ̃ε + (γ − 1)c2

2ρ0
ε2ρ̃2

ε , et c = √
p′(ρ0) la vitesse du son. (3)
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Il s’agit de décrire des solutions qui se propagent comme des faisceaux (comme dans l’approximation paraxiale), mais
dans un cadre non linéaire (les effets non linéaires et la viscosité sont du même ordre que les oscillations longitudi-
nales).1

On établit des théorèmes de Cauchy (existence et stabilité par rapport aux données initiales) et on montre en quel
sens les solutions de cette équation fournissent des approximations de certaines solutions du système initial.

On a confirmé les résultats numériques de [2] analytiquement.

1. Existence, stability, uniqueness and blow-up results

We consider the KZK equation (1) involving two positive constants β and γ with the condition of periodicity and
of mean value zero (which corresponds to practical situations [2])

u(x + L,y, t) = u(x, y, t),

L∫
0

u(x, y, t)dx = 0. (4)

We define the inverse of the derivative ∂−1
x as an operator acting in the space of periodic functions with mean value

zero

∂−1
x f =

x∫
0

f (s)ds +
L∫

0

s

L
f (s)ds. (5)

Therefore (1) is equivalent to the equation

ut − uux − βuxx − γ ∂−1
x �yu = 0 in Rx/(LZ) × Ω. (6)

Finally when γ = 0 (1) reduces to the Burgers–Hopf equation for which existence smoothness and uniqueness of
solution are well-known. For γ = β = 0 it reduces to the Burgers equation which after a finite time exhibits singular-
ities.2

To prove the existence theorem we use a priori estimates for smooth solutions of the integrated KZK equation (6)
(the L2 norm and the Hs in (R+

x /(LZ)) ×Rn−1
y ) are denoted by |u| and by ‖u‖s )

1

2

d

dt

∣∣u(·, ·, t)∣∣2 + β
∣∣∂xu(·, ·, t)∣∣2 = 0, (7)

for s >

[
n

2

]
+ 1

1

2

d

dt
‖u‖2

s + β‖∂xu‖2
s � C(s)‖u‖3

s (8)

and
1

2

d

dt
‖u‖2

s + βC(L)‖u‖2
s � C(s)‖u‖3

s . (9)

The estimates (8), (9) are valid for s > [n
2 ]+1 which is necessary for the use of the Sobolev theorem. The estimate (7)

shows that we have the conservation of L2-norm if β = 0. We obtain the following:

Theorem 1.1. For the Cauchy problem

ut − uux − βuxx − γ ∂−1
x (�yu) = 0, u(x, y,0) = u0 (10)

considered in (Rx/(LZ)) ×Rn−1
y with (4), and with β � 0 one has the following results:

(i) For s > [n
2 ] + 1 there exists a constant C(s,L) such that for any initial data u0 ∈ Hs the problem (10) has on an

interval [0, T [ with T � 1
C(s,L)‖u0‖Hs

a solution in C([0, T [,H s) ∩ C1([0, T [,H s−2).

1 Ce travail a été motivé par l’usage fait au Laboratoire d’Ondes Acoustique de cette équation dans les problèmes d’écho-grraphie et de retoure-
nement temporel. Il a été réalisé dans le cadre de l’ACI « Retournement Temporel », convention A020 de Ministère de la Recherche Français. Cette
équation est aussi utilisé en magnitisme [7]. Le modèle régularisé de l’équation a été envisagé dans [5].

2 The J. Bourgain-type method with introduction of the Bourgain spaces cannot be used here because of the absence of the terms with an odd
derivative as for example uxxx in (6). The KZK equation is not integrable at variance with the Kadomtsev–Petviashvili (KP).
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(ii) Let T ∗ be the biggest time on which such solution is defined then one has

T ∗∫
0

sup
x,y

(∣∣∂xu(x, y, t)
∣∣ + ∣∣∇yu(x, y, t)

∣∣)dt = ∞. (11)

(iii) If β > 0 there exists a constant C1 such that ‖u0‖s � C1 ⇒ T ∗ = ∞.
(iv) For two solutions u and v of KZK equation, with u ∈ L∞([0, T [;Hs) and v ∈ L2([0, T [;L2), one has the fol-

lowing stability uniqueness result:∣∣u(, t) − v(·, t)∣∣
L2 � e

∫ t
0 supx,y |∂xu(x,y,s)|ds

∣∣u(·,0) − v(·,0)
∣∣
L2 . (12)

Remark 1. The estimate (12) is of strong-weak form: as in [3] only the L∞ norm of ux is needed.

Remark 2. When there is no viscosity all the corresponding statements of Theorem 1.1 remain valid for 0 > t > −C

with a convenient C.

Theorem 1.2. The equation

(ut − uux)x − γ�yu = 0 in Rt+ ×Rx × Ω (13)

with Neumann boundary condition on ∂Ω has no global in time smooth solution if supx,y ∂xu(x, y,0) is large enough
with respect to γ .

Remark 3. As we can see from [2] the result of the theorem confirms the numerical results. One observes that for
β → 0 the solution of the KZK equation has a quasi-shock approaching the shock wave, into which it degenerates for
β = 0.

The proof of the blow-up follows the ideas of S. Alinhac [1]. First the blow-up is observed for γ = 0 and related
to a singularity in the projection of an unfolded ‘blow-up system’. Second the properties of this unfolded blow-up
system are shown to be stable under small perturbations. One uses a Nash–Moser theorem with tamed estimates and
this is the reason why will exists a T ∗ such that:

lim
t→T ∗(T

∗ − t) sup
x,y

∂xu(x, y, t) > 0.

2. Approximation results

One finds in physical works [2,8] a formal derivation of the KZK equation as a second order approximation of the
isentropic Navier–Stokes system (2) with the approximate state equation (3). We offer here to give a strict proof and
orders of magnitude of the approximation.

We study solutions propagating along the axis x1 direction. Therefore it is assumed that its variation in the direction
x′ = (x2, x3, . . . , xn) perpendicular to the x1 axis is much larger that its variation along the axis x1. We use the ansatz

ρε = ρ0 + ερ̃ε = ρ0 + εI

(
t − x1

c
, εx1,

√
ε x′

)
= ρ0 + εI (τ, z, y), (14)

uε = εũε = ε(uε,1, u
′
ε) = ε(v + εv1,

√
ε �w)

(
t − x1

c
, εx1,

√
ε x′

)
= ε(v + εv1,

√
ε �w)(τ, z, y), (15)

here ε is a dimensionless parameter which characterizes the smallness of the perturbation. For instance in water with
a initial power of the order of 0.3 Vt/cm2 ε = 10−5. We obtain

ε(ρ0v − cI) = 0 ⇒ v(τ, z, y) = c

ρ0
I (τ, z, y), (16)

ε3/2(ρ0∂τ �w + c2∇yI ) = 0 ⇒ �w(τ, z, y) = c2

ρ0

( τ∫
∇yI (s, z, y)ds +

L∫
s

L
∇yI (s, z, y)ds

)
, (17)
0 0
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ε2
(

ρ0∂τ v1 + c2∂zI − γ − 1

2ρ0
c∂τ I

2 − ν

cρ0
∂2
τ I

)
= 0 ⇒

v1(τ, z, y) = c3

2ρ0
∂−2
τ �yI + γ − 1

4ρ2
0

cI 2 − c(γ − 1)

4Lρ2
0

L∫
0

I 2 dτ + 3ν

2cρ2
0

∂τ I, (18)

ε2
(

c∂2
τzI − γ + 1

4ρ0
∂2
τ I 2 − ν

2c2ρ0
∂3
τ I − c2

2
�yI

)
= 0 which is the KZK equation. (19)

We consider the exact system (2) denoted Φ(ρε,uε, ν) = 0 and the KZK solution I (τ, z, y) = I (t − x1
c
, εx1,

√
ε x′)

of (19).
The viscosity ν introduces some difference in the construction.
With no viscosity both the nonlinear system of elasticity [3] and the KZK equation are well posed for positive

and negative but finite time, so, and since z = εx1 (as soon as z becomes the time variable according to the KZK
derivation), the problem of approximation is considered in a cone

C(t) = {0 < s < t} × Qε(s) =
{
x = (x1, x

′): |x1| � R

ε
− Ms, M � c, x′ ∈ Rn−1

}
. (20)

With viscosity both problems are well posed only for positive time but under a smallness hypothesis of initial data
up to infinity (we prove this for the Navier–Stokes system). So the approximation is considered in the half space
x1 > 0, t > 0, x′ ∈ Rn−1. This time we have also to solve the boundary-valued problem for Navier–Stokes system
(cf. [4,6] for the related questions for Navier–Stokes system in the half space).

With the sufficiently smooth initial data I0(t, y) we obtain a smooth solution of the KZK equation I (τ, z, y).
In the nonviscous case ν = 0 we consider the solution I of the KZK equation (19) with ν = 0 and introduce the

correctors v, w and v1 given by (16)–(18) then we have the following:

Theorem 2.1. We take the initial data for the KZK equation with ν = 0 from Hs , s > max{4, [n
2 ] + 1}. Consider now

the Euler system Φ(Uε,0) = 0, Uε = (ρε, ρεuε)
T in a cone (20) with the initial data

(ρ̄ε − ρε)|t=0 = 0, (ūε − uε)|t=0 = 0. (21)

Then (see [3, p. 62]) there exists T0 such that for the time interval 0 � t � T0
ε

there exists the classical solution

Uε = (ρε, uε) of the Euler system in a cone C(T ) = {0 < t < T | T <
T0
ε

} × Qε(t) with

‖∇ · Uε‖L∞([0,
T0
ε

[;Hs−1)
< εC for s >

[
n

2

]
+ 1.

Then there exists a constant C such that for any ε small enough the solutions Uε of the exact system and
Uε = (ρ̄ε, ρ̄ε ūε)

T of the approximate system Φ(Uε,0) = ε5/2R (the functions ūε , ρ̄ε are constructed according to
formulas (14), (15) and the rest R is bounded), which have been determinate as above in the cone C(T ) with the same
initial data (21), satisfy the estimate

‖Uε − Uε‖2
L2(Qε(t))

� ε5eC‖∇·Uε‖L∞(C(T ))t � ε5eCεt . (22)

The estimate (22) also holds in the norm of Hs′
for s′ = s − 4 as soon as in the cone the booth solutions Uε and Ũε

are in C([0,
T0
ε

[;Hs).

For the viscous case we consider the solution of the KZK equation for ν > 0 and the correctors v, w and v1 given
by (16)–(18). First we observe

Proposition 2.2. Suppose that the initial data of the KZK Cauchy problem I0(t, y) = I0(t,
√

ε x′) is such that

(i) it is periodic on t with the period L and of mean value zero,
(ii) for fixed t it has the same sign for all y ∈Rn−1, and for t ∈ ]0,L[ change the sign, i.e., I0 = 0, only finite number

times,
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(iii) I0(t, y) ∈ Hs′
({t � 0} ×Rn−1) for s′ > max{6, [n

2 ] + 1},
(iv) I0 is sufficiently small in the sense of Theorem 1.1 and I0 = εpĨ0, p � 0.

Then there exits a unique global in time solution I (τ, z, y) of (19) for z = εx1 > 0. Therefore the functions ρ̄ε , ūε ,
defined by (14) and (15) in the half space{

x1 > 0, x′ ∈Rn−1, t > 0
}
, (23)

are smooth:

ρ̄ε ∈ C
([0,∞[,H s′(R/LZ ×Rn−1

y

)) ∩ C1([0,∞[;Hs′−2(R/LZ ×Rn−1
y

))
, (24)

ūε ∈ C
([0,∞[;Hs′−2(R/LZ ×Rn−1

y

)) ∩ C1([0,∞[;Hs′−4(R/LZ ×Rn−1
y

))
. (25)

The Navier–Stokes system (2) in the half space with the initial data (21) and following boundary conditions

(ūε − uε)|x1=0 = 0,

and when the first component of the velocity is positive uε,1|x1=0 > 0 (i.e. at points where the fluid enters the domain)
the additional boundary condition

(ρ̄ε − ρε)|x1=0 = 0.

When uε,1|x1=0 � 0 there is not any boundary condition for ρε .
Suppose also that uε → 0, ρε → ρ0 as |x| → ∞.
Then there exists a constant T0 > 0 such that for all t < T0/ε

2+p there exists a unique solution Uε = (ρε, uε) of
Navier–Stokes system (2) with the same smoothness as (24), (25).

Remark 4. Since the boundary conditions for the Navier–Stokes system are periodic and of mean value zero on t ,
u1|x1=0 changes the sign and the inflow part of the boundary goes after the inflow one and so on. This avoids the
pathology that may result from a change of type of the boundary condition in the tangential variables. This hypothesis
follows from the physical works of Zabolotskaya (see [2]), where one takes as the initial conditions for the KZK
equation (which correspond to the boundary condition for u1) the expression I (τ,0, y) = −F(y) sin τ. The amplitude
distribution F(y) is taken two types: for a Gaussian beam F(y) = e−y2

, and for a beam with a polynomial amplitude

F(y) =
{

(1 − y2)2, y � 1,

0, y > 1.

Then we prove

Theorem 2.3. Suppose the assumptions of Proposition 2.2. Then there exists a unique global in time solution
Uε = (ρ̄ε, ūε) of the approximate system Φ(Uε, ν) = ε5/2R (with a bounded rest R) deduced from a solution of
the KZK equation with the help of (16)–(18). The function Uε(x1, x

′, t) = Uε(x1 − ct, εx1,
√

ε x′) is defined in the
half space (23). Moreover, according to its definition, we have (24), (25). Then there exists a constant C such that for
all rather small ε the solutions (ρε, uε) of (2) and (ρ̄ε, ūε) of the approximate system satisfy the following stability
estimate

‖ρε − ρ̄ε‖L2 + ‖ρεuε − ρ̄ε ūε‖L2 � ε5/2eC‖∇·Uε‖L∞ t � ε5/2eCεt (26)

which remains any finite time 0 < t < T
ε

ln 1
ε

smaller than the order ε (here T is a positive constant and T = O(1)).

Remark 5. To have the estimate (26) it is sufficient to have an admissible weak solution of the Navier–Stokes sys-
tem (2) satisfying the boundary conditions in the half space.

Definition 2.4. The pair of functions (ρ,u) is called an admissible weak solution of Navier–Stokes system (2) satis-
fying the boundary conditions in the half space if it satisfies the following properties:
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(i) it is a weak solution of (2), and it satisfies in the sense of distributions (see [3, p.52])

∂tη(Uε) + ∇ · q(Uε) − εν

[
0

uεuε

]
� 0,

(ii) it satisfies the equality

−
∫

x1>0

U2
ε

2
dx +

t∫
0

∫
x1>0

(
∇ · UεF(Uε) + εν

[
0

|∇ · uε |2
])

dx ds +
∫

x1>0

U2
0 (x)dx

+
t∫

0

∫
Rn−1

Uε

(
F(Uε) − εν

[
0

∇uε

])∣∣∣∣
x1=0

dx′ dt = 0.
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