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Abstract

Let Kn = Q(ζn) be the n-th cyclotomic field with n �≡ 2 (mod 4). Let On = Z[ζn] be the ring of integers of Kn and Sn the set
of all elements α ∈ On which are sums of squares in On. Let gn be the smallest positive integer m such that every element in Sn is
a sum of m squares in On. In this Note, we show that gn = 3 unless n is odd and the order of 2 in (Z/nZ)∗ is odd, in which case
gn = 4. To cite this article: C.-G. Ji, D.-S. Wei, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sommes de carrés dans les anneaux d’entiers de corps cyclotomiques. Soit Kn le n-ième corps cyclotomique, avec
n �≡ 2 (mod 4), n > 1. Soit On l’anneau des entiers de Kn et soit Sn le sous-ensemble de On formé des éléments qui sont sommes
de carrés. Soit gn le plus petit entier m > 0 tel que tout élément de Sn soit somme de m carrés d’éléments de On. Nous montrons
que : gn = 3 si n est divisible par 4 ; gn = 3 (resp. gn = 4) si n est impair et si l’ordre de 2 dans le groupe multiplicatif (Z/nZ)∗
est pair (resp. impair). Pour citer cet article : C.-G. Ji, D.-S. Wei, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

It is well known that all positive integers are sums of four integral squares, first proved by Lagrange. What happens
for other number fields? Let K be an algebraic number field of degree n with exactly r1 real embeddings σ1, σ2, . . . , σr1

and r2 pairs of complex embeddings σr1+1, σ̄r1+1, . . . , σr1+r2 , σ̄r1+r2 . The field K is totally real in the case r1 = n.
A number α in K is called totally positive whenever the r1 conjugates σ1(α), . . . , σr1(α) are all positive. In 1902,
Hilbert conjectured that every totally positive α in K is a sum of four squares in K . The first published proof of this
was given by Siegel [10] in 1921. F. Götzky [3] proved the following surprising theorem:
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Theorem 1. The field K = Q(
√

5) is the only real quadratic field in which every totally positive integer is the sum of
four integral squares in K .

Götzky’s result was improved by H. Maass [7], who proved that

Theorem 2. Let K = Q(
√

5). Then every totally positive integer in K is the sum of three integral squares in K .

Continuing this line of investigation, Siegel [11] proved the following startling results.

Theorem 3. Let K be totally real and suppose that all totally positive algebraic integers are sums of integral squares
in K ; then K is either the rational number field Q or the real quadratic field Q(

√
5).

Theorem 4. If K is not totally real, then all totally positive algebraic integers are sums of integral squares in K if
and only if the discriminant of K is odd.

Hsia [4, page 531] obtained the following result:

Corollary. Let F be a totally imaginary number field, R the ring of integers in F . Assume that the absolute discrimi-
nant of F is an odd integer. Then we have:

(i) Every integer of R is representable as a sum of four integer squares;
(ii) Every integer of R is representable as a sum of three integer squares provided the class number of F is odd,

and moreover, the residue degree f (p/2) at dyadic primes of F are even (e.g. F = Q(
√−p) with prime

p ≡ 3 (mod 8)).

In Theorem 4, when K is an imaginary quadratic field, using some results from algebraic K-theory of integral
quadratic forms and the theory of spinor genus of quadratic forms, Estes and Hsia [1,2] proved that

Theorem 5. Every algebraic integer in K = Q(
√−D), D a positive square free integer, can be expressed as a sum

of three integral squares when and only when D ≡ 3 (mod 8) and D does not admit a positive proper factorization
D = d1d2 (i.e., di > 1) which satisfies the conditions: (a) d1 ≡ 5,7 (mod 8) and (b) the Jacobi symbol (d2/d1) is 1.

In [6], we determined all algebraic integers as sums of three integral squares over all imaginary quadratic fields.
In [9], Qin gave a criterion for the sum of two squares over a quadratic number fields.

Let Kn = Q(ζn) be the n-th cyclotomic field where ζn is a primitive n-th root of unity. Let On = Z[ζn] be the ring
of integers of Kn. If n ≡ 2 (mod 4) then Kn = Q(ζn/2) = Kn/2. Hence in this note we assume that n �≡ 2 (mod 4).
Let Sn be the set of all elements α ∈ On which are sums of squares in On and set

gn = min{m: any element in Sn is a sum of m integral squares}.
How to determine Sn and gn? It is easy to see that −1 ∈ Sn and Sn is a subring of On. In particular, Sn = On if n is
odd. In [5], we proved that every algebraic integer in On is a sum of three integral squares if and only if n is odd and
the order of 2 in (Z/nZ)∗ is even. In this note, we shall prove that:

Theorem 6. Let n > 2 be an integer with n �≡ 2 (mod 4). Then (1) gn = 3 if n ≡ 0 (mod 4); (2) gn = 3 (resp. gn = 4)
if n is odd and the order of 2 in (Z/nZ)∗ is even (resp. odd).

2. Some lemmas

For any cyclotomic field Kn, there are exactly φ(n)/2 pairs of complex embeddings of Kn, i.e., Kn is totally
imaginary. So every element of Kn is totally positive. Let n = p

t1
1 · · ·pts

s , where p1, . . . , ps are different primes. Then
we have On = O t1 · · ·O

p
ts .
p1 s
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Lemma 1. Let n > 2 be an integer with n �≡ 2 (mod 4). Then (1) If n is odd, then Sn = On; (2) If n = 2mr with m � 2
and r is odd, then α ∈ Sn if and only if

α = a0 + a1ζ2m + · · · + at−1ζ
t−1
2m ∈ Or [ζ2m ]

such that t = φ(2m) and a2k−1 ∈ 2Or for 1 � k � t/2.

Proof. (1) If n is odd, then the discriminant of Kn is odd. So by Theorem 4 we have Sn = On. (2) Let z = ζ2m

and β = ∑t−1
j=0 bj z

j , where bj ∈ Or . Then β2 = ∑t−1
j=0 cj z

j ∈ Or [z] such that cj ∈ 2Or for 2 � j . So if α ∈ Sn,

then α = ∑t−1
j=0 aj z

j ∈ Or [z] such that aj ∈ 2Or for 2 � j . Conversely, since Or = Sr , the ak are sums of integral

squares, and it is enough to prove that z2j and 2z2j+1 belong to Sn for all j , which reduces to 2z ∈ Sn. But 2z =
(1 + z)2 + (−1) + (−z2) and the result follows since −1 belongs to the subring Sn. �

Let s(K) be the Stufe of the number field K , that is to say, the smallest number of squares necessary to represent
−1 in K .

Lemma 2. Let K = Q(ζm), where m � 3 is odd. Then s(K) is equal to 2 or to 4 depending on whether the order of 2
modulo m is even or odd.

Proof. See [8]. �
3. Proof of Theorem 6

Case A. Suppose that n ≡ 0 (mod 4), we have i = √−1 ∈ Kn. So if α ∈ Sn then −α ∈ Sn. Hence there exist
β1, . . . , βl ∈ On such that −α = β2

1 + · · · + β2
l . So there exists a γ ∈ On such that

α + (β1 + · · · + βl + 1)2 = (γ + 1)2 − γ 2.

Hence

α = (γ + 1)2 − γ 2 − (β1 + · · · + βl + 1)2 = (γ + 1)2 + (iγ )2 + (
i(β1 + · · · + βl + 1)

)2
.

Now we obtain that every α ∈ Sn is a sum of three integral squares in Kn. Next we shall find an element in Sn which is
not a sum of two integral squares in Kn. Suppose n = 2mr with m � 2 and r is odd. Let α = 2(1 − ζ2m).By Lemma 1,
α ∈ Sn. Suppose that α is a sum of two integral squares in Kn. Let α = 2(1 − ζ2m) = β2 + γ 2 = (β + γ i)(β − γ i),

where β , γ ∈ On. Let x = β + γ i, y = β − γ i. Then x, y ∈ On and x = 2β − y. Let p be a prime ideal of On lying
over 2, and let vp(.) be a valuation determined by p such that vp(1 − ζ2m) = 1. Then vp(2) = 2m−1.

(a) If vp(y) < 2m−1, then vp(x) = vp(y). So vp(x)+ vp(y) = 2vp(y) is even. But vp(2(1 − ζ2m)) = 2m−1 + 1 is odd.
A contradiction.

(b) If vp(y) � 2m−1, then vp(x) � 2m−1. Hence vp(x) + vp(y) � 2m. But vp(2(1 − ζ2m)) = 2m−1 + 1 < 2m. A con-
tradiction.

So gn = 3 for n ≡ 0 (mod 4).
Case B. Suppose that n > 1 is odd and the order of 2 in (Z/nZ)∗ is even. Then there exists an odd prime p such

that p|n and the order of 2 in (Z/pZ)∗ is even. Let f = 2a be the order of 2 modulo p. Then we have 22a = 2f ≡
1 (mod p) and 2a ≡ −1 (mod p). From

(1 + ζ 2
p)(1 + ζ 22

p ) · · · (1 + ζ 2a

p ) = −1/ζ 2
p,

we have

−1 = ζ 2
p(1 + ζ 2

p)(1 + ζ 22

p ) · · · (1 + ζ 2a

p ) = α2 + β2,

where α, β ∈ Z[ζp]. In the following, we shall prove that every γ ∈ Sn is a sum of three integral squares in On. Let
γ ∈ Sn. Then −γ ∈ Sn. Hence we have −γ = β2

1 + · · · + β2
l , βi ∈ On. Then there exists a δ ∈ On such that

γ + (β1 + · · · + βl + 1)2 = (δ + 1)2 − δ2.
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So there exist x, y, z ∈ On such that γ = x2 − (y2 + z2), using −1 = α2 + β2, we have

γ = x2 + (αy + βz)2 + (αz − βy)2.

Now it remains to prove that there exists an element in Sn which is not a sum of two integral squares in On. Let
K = Kn, O = On and L = K(

√−1) = Q(ζ4n). Then [L : K] = 2. Let p be a prime ideal over 2 in K and q a prime
ideal over p in L. Then p is totally ramified in L. Let Lq and (K)p denote the completions of L and K at q and p

respectively. By local class field theory, we have (K)∗p/N(L∗
q) ∼= Gal(Lq/(K)p). Hence [(K)∗p : NL∗

q] = 2. Suppose
that every element in Sn is a sum of two integral squares and let a/b ∈ K , a, b ∈ O . Then ab ∈ O = Sn (Lemma 1)
is a sum of two squares and so is a/b. Hence every element in K is a sum of two squares in K . But O is dense in
Op. Let a = limak in Op with ak in O . By assumption, each ak = b2

k + c2
k is a sum of two squares. By compactness

of Op, we can assume that bk and ck converge. In particular, a is a sum of two squares in Op. This implies that each
element in (K)p is a sum of two squares, a contradiction. Hence gn = 3.

Case C. Suppose that n > 1 is odd and the order of 2 in (Z/nZ)∗ is odd. By the Corollary of Hsia [4], we have
gn � 4. On the other hand by Lemma 2, we have gn � 4. So gn = 4. This completes the proof of Theorem 6. �
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