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Numerical Analysis
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Abstract

A model that rigorously computes the gas–particle partitioning and liquid–liquid equilibrium for organic atmospheric aerosol
particles is presented. The dynamics of the mass transfers between the particle and the gas phase are modeled with differential
equations and are coupled with a constrained optimization problem for the thermodynamic equilibrium inside the particle. The
nonlinear system composed by the first order optimality conditions coupled with the discretized differential equations is solved with
an interior-point method and a Newton method. The resulting linear system is decoupled with sequential quadratic programming
techniques. Numerical results and comparisons of time scales show the accuracy and efficiency of our algorithm. To cite this
article: N.R. Amundson et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un problème d’optimization dynamique lié à la modélisation d’aérosols organiques. Nous proposons un modèle pour le cal-
cul de l’équilibre thermodynamique et la séparation de phases entre une particule et la phase gazeuse. La dynamique des transferts
de masse entre particule et phase gazeuse est caractérisée par un système d’équations différentielles couplées avec un problème
d’optimisation décrivant l’équilibre interne de la particule. Les conditions de premier ordre et une discrétisation implicite des équa-
tions différentielles forment un système d’équations non linéaires qui est traité avec une méthode de point intérieur couplée à une
itération de Newton. Des résultats numériques et une comparaison des temps caractéristiques montrent la précision et l’efficacité
de notre algorithme. Pour citer cet article : N.R. Amundson et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

The modeling of the dynamics of organic-containing aerosol particles is a crucial step in the simulation of at-
mospheric processes [6]. Currently available computational methods rely on a priori assumptions and split hydropho-
bic and hydrophilic components, through a phase lock that does not allow all organic components to partition into all
possible phases.
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In this note, a computational model for the dynamics and mass transfer between an aerosol particle and the gas
phase is presented. It does not rely on any a priori assumptions and computes accurately the gas–particle partitioning,
and guarantees the conservation of the total mass. The numerical method relies on a primal-dual interior-point method
for the minimization of the Gibbs free energy that is described in [1,2] and is coupled with an implicit first order time
discretization scheme for the computation of the fluxes. A sequential quadratic programming approach allows to solve
accurately and efficiently the nonlinear problem at each time step.

We first describe the model for the thermodynamic equilibrium in the particle and the mass transfer dynamics
between the particle and the gas. Let ns denote the total number of substances in the gas–particle system, c = (ci)

ns

i=1 ∈
R

ns be the substance–abundance concentration vector in unit of moles of the substances in the bulk gas phase and
btot = (btot

i )
ns

i=1 ∈ R
ns be the concentration vector of the same substances in the complete gas–particle system. The

concentrations in the particle are therefore given by b(t) = btot − c(t).
For one particle of radius r(t) > 0 at fixed temperature T and pressure, the gas–particle partitioning for a given

substance-abundance vector btot > 0 is driven by the rate of change of the concentrations c:

d

dt
c(t) = −ϕ(r)N(r)

(
c(t) − csurf(t)η(r)

)
, (1)

where ϕ(r) is the mass transfer rate, N(r) = N is the number density (assumed to remain constant in order to mimic
a population of N identical particles), csurf(t) = (csurf

i )
ns

i=1 is the gas concentration vector at the particle surface and
η(r) is the Kelvin effect due to the curvature of the surface of the particle. More precisely, the mass transfer rate is the
diagonal matrix given by

ϕ(r) = 4πDir
1

λ/(αir) + 1
,

where Di is the gas-phase molecular diffusivity of species i, λ is the air mean free path and αi is the accommodation
coefficient of the particle species i. Initial concentrations c(0) are prescribed. The internal composition of the aerosol
is the solution of the constrained optimization problem arising from the minimization of the Gibbs free energy [1,6]:

min
(xα,yα)

P∑
α=1

yαg(xα), s.t. xα > 0, eTxα = 1, yα � 0, α = 1, . . . ,P , and
P∑

α=1

yαxα = btot − c(t), (2)

where eT = (1, . . . ,1), P is the number of possible aerosol phases, (xα)Pα=1 is the mole-fraction concentration vector in
phase α, (yα)Pα=1 is the total number of moles in phase α. The function g is the molar Gibbs free energy function. It is
modeled by the UNIFAC model, based on the concept of group contributions. The surface equilibrium concentration,
csurf(t), depends on the composition and phase state of the aerosol (yα,xα)Pα=1. The relation between the internal
composition of the particle and the mass fluxes is strongly nonlinear. Following the mass action laws, the surface
equilibrium concentration vector csurf(t) is given by

csurf(t) = 1

RT
pvapor exp

(∇g(xα)
)
,

for all α = 1, . . . ,P such that yα > 0, where R = 8.20575 × 10−5 [J K−1 l−1] is the gas constant and pvapor is the
vapor pressure.

The minimization problem (2) expresses the liquid–liquid equilibrium inside an aerosol particle composed of or-
ganic species, subject to mass balance constraints. Depending on the atmospheric conditions, the equilibrium state
consists of one or several liquid phases, which number is a priori unknown. Once the concentrations are known, the
radius of the particle is computed by

4

3
πNr(t)3 =

ns∑
i=1

(btot
i − ci(t))mc,i

ρi

,

where mc = (mc,i)
ns

i=1 is the molecular weight vector of the components set and ρi is the density of each individual
chemical components in the particle. For simplicity, the Kelvin effects are neglected here (η(r) = 1).
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The inequality constraints in (2) are relaxed with a log/barrier formulation with a penalty parameter ν > 0. By
replacing (2) by its first order optimality conditions, a system of differential-algebraic equations of index 1 [4] is
obtained:

d

dt
c(t) = −ϕ(r)N(r)

(
c(t) − csurf(t),

yα

(∇g(xα) + λ
) + ζαe = 0, g(xα) + λTxα − ν/yα = 0,

P∑
α=1

yαxα = btot − c, eTxα = 1, xα, yα > 0, α = 1, . . . ,P .

(3)

Let t0, t1, . . . be discrete times with τ = tn+1 − tn and cn, bn and rn denote respectively approximations of c(tn),
b(tn) and r(tn). The system (3) is discretized with a first order Euler implicit time discretization scheme [4] between
times tn and tn+1. An explicit treatment of the radius r is used in (3) due to different characteristic times [6]. At
each time tn+1, the phase equilibrium is characterized by the global minimum of the Gibbs free energy of the particle
system for a given feed bn+1 = btot − cn+1.

cn+1 − cn

τ
= −ϕ

(
rn

)
N

(
cn+1 − 1

RT
pvapor exp

(∇g
(
xn+1
α

)))
,

yn+1
α

(∇g
(
xn+1
α

) + λn+1
) + ζ n+1

α e = 0, g
(
xn+1
α

) + (
λn+1

)Txn+1
α − ν/yn+1

α = 0,

P n+1∑
α=1

yn+1
α xn+1

α = btot − cn+1, eTxn+1
α = 1, xn+1

α , yn+1
α > 0, α = 1, . . . ,P n+1.

(4)

The radius of the particle is then updated with the algebraic relation

rn+1 =
(

3

4πN

ns∑
i=1

(btot
i − cn+1

i )mc,i

ρi

)1/3

.

At each time step tn+1, a primal-dual interior-point algorithm [1–3] is used for the resolution of the coupled
problem. A sequence of solutions to the nonlinear system (4) is obtained for decreasing values of ν [3]. For given ν,
the system (4) is solved by a Newton iteration. The resulting linear system is solved with direct methods to compute
increments for the particle concentrations and the internal variables and update the corresponding variables. Then ν is
decreased until the norm of the residuals is smaller than a given tolerance. The final iterate is set to be the approximated
solution (xn+1

α , yn+1
α ,λn+1, ζ n+1

α , cn+1) for the next time step.
The block-structured Newton system related to (4) is solved with sequential quadratic programming techniques to

decouple the differential variables cn+1 from the optimization variables. The techniques presented in [1,2] are used to
solve the pure optimization problem and a convex unconstrained minimization problem allows to obtain cn+1.

We consider the three components system (ns = 3) with 1-hexacosanol (C26H54O), pinic acid (C9H14O4) and
water (H2O) at temperature 298.15 [K] and pressure 1 [atm]. This example of aerosol particles of atmospheric interest
admits a maximum of three phases at equilibrium for some particular compositions. The vapor pressures are given by
1.7734 × 10−5, 2.2545 × 10−5 and 3.13 × 10−2 [atm] for 1-hexacosanol, pinic acid and water respectively, α = 0.01
and λ = 0.1 × 10−6 [m].

Fig. 1 illustrates the mass transfer between the particle and the gas phase, when N = 108 [m−3]. A non-equilibrium
solution is chosen as a starting point, that is btot = (3.79,4.21,15.63) [moles] and c0 = (0.1,3.8,15.4) [moles]. In
this case, (i) the repartition of mass between gas and particle phase is not reached and (ii) the mixing of components
inside the particle is not an equilibrium state. The left figure shows the evolution of the normalized particle feed
b(t) = btot − c(t) in the phase diagram. Each vertex of this two-dimensional simplex (triangle) corresponds to a
pure component without mixing, while any point in the interior of the simplex corresponds to a certain mixing of
water, pinic acid and 1-hexacosanol. The regions of the simplex where the equilibrium state is composed of P phases,
P = 1,2,3, are separated with solid black lines. Phase separations happen when the particle feed changes of region
and crosses the solid black lines. The middle figure shows the total number of moles in each phase (yα), while the
right figure illustrates the radius evolution in function of time.
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Fig. 1. Dynamics for the three-component system water, pinic acid, 1-hexacosanol. Left: evolution of the concentration vector b in the phase
diagram; middle: convergence of the total number of moles in the phases inside the aerosol particle; and right: aerosol growth and evolution of the
radius of the particle.

Table 1
Comparisons of orders of magnitude for characteristic times for various radius and number densities

Number density Radius [m] τ0 [s] [5] Stationarity time [s] Radius [m] τ0 [s] [5] Stationarity time [s]

107 10−6 2.49 × 104 ∼ 9. × 104 10−7 2.29 × 106 ∼ 8. × 106

108 10−6 2.49 × 103 ∼ 9. × 103 10−7 2.29 × 105 ∼ 6. × 105

109 10−6 2.49 × 102 ∼ 8. × 102 10−7 2.29 × 104 ∼ 5. × 104

Numerical results are validated by the comparison of the time scales to reach gas–particle equilibrium with [5].
A characteristic time of gas–particle partitioning dynamics is given by τ0 = 1

ϕ(r)N
(under linear assumptions [6]).

Table 1 compares the characteristic times computed by our model and those reported in [5] for typical particles of
radius of 1 µm and 0.1 µm respectively, suggesting a good agreement in the order of magnitude between those results.
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