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Partial Differential Equations
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Abstract

We prove in this Note the existence and uniqueness of a strong local solution to the Cauchy problem for the quasilinear Benney
system. To cite this article: J.-P. Dias et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Existence d’une solution locale forte pour un système de Benney quasilinéaire. Nous prouvons dans cette Note l’existence
et unicité d’une solution locale forte du problème de Cauchy pour le système de Benney quasilinéaire. Pour citer cet article : J.-P.
Dias et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main result

We consider the system introduced by Benney in [1] to study the interaction between short and long waves, for
example gravity waves in fluids:⎧⎨

⎩
iut + uxx = |u|2u + vu, (a)

x ∈ R, t � 0,

vt + [
f (v)

]
x

= |u|2x, (b)
(1)

where f is a polynomial real function, u and v (real) represent the short and the long wave, respectively.
In [2] the existence of weak solutions for (1) was proved for f (v) = av2 − bv3, with a and b real constants, b > 0,

in the following sense:

Theorem 1.1. Given u0, v0 ∈ H 1(R) with v0 real-valued, there exists functions

u ∈ L∞(
R+;H 1(R)

)
, v ∈ L∞(

R+; (L4 ∩ L2)(R)
)

such that
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∞∫
0

∫
R

u
∂ϕ

∂t
dx dt +

∞∫
0

∫
R

∂u

∂x

∂ϕ

∂x
dx dt +

∫
R

u0(x)ϕ(x,0)dx +
∞∫

0

∫
R

|u|2uϕ dx dt +
∞∫

0

∫
R

vuϕ dx dt = 0,

∞∫
0

∫
R

v
∂ψ

∂t
dx dt +

∞∫
0

∫
R

f (v)
∂ψ

∂x
dx dt +

∫
R

v0(x)ψ(x,0)dx −
∞∫

0

∫
R

∂

∂x
|u|2ψ dx dt = 0,

for all functions ϕ,ψ ∈ C1
0(R × [0,+∞[) (i.e. in the class of continuously differentiable functions with compact

support), with ϕ being complex-valued and ψ real-valued.

This result was obtained for this particular system by application of the vanishing viscosity method and we could
not extend the necessary estimates to the Burger’s case (a = 1, b = 0) or to more general cases. Here we will prove
the existence of (local) strong solutions to (1) for general f , extending previous results in [6,7] for f linear:

Theorem 1.2. Let (u0, v0) ∈ H 3(R) × H 2(R) and f ∈ C3(R). Then there exists a unique strong solution (u, v) of the
Cauchy problem associated to (1), with

(u, v) ∈ Cj
([0, T ];H 3−2j (R)

) × Cj
([0, T ];H 2−j (R)

)
, j = 0,1.

Here, the life-span T > 0 depends exclusively on f and on the initial data (u0, v0).

The main difficulty here is the derivative-loss in the right-hand side of Eq. (1)(a). This cannot be handled easily
by the Schrödinger kernel, due to its limited smoothing properties. The method employed in [6,7] for f linear, based
in the inhomogeneous smoothing effect of the Schrödinger group, cannot be easily implemented for f nonlinear. We
will address this problem by introducing some auxiliary functions and rewriting system (1) without derivative loss.
A similar technique was introduced in [5] to solve the fully nonlinear wave equation and employed in [4], in the
context of the Zakharov–Rubenchik system.

Another interesting open problem is the study of the probable blow-up of the local smooth solutions.

2. An equivalent system

Let us take (u, v) a solution of (1). By setting F = ut , we obtain from (1)(a)

iF + uxx − u = |u|2u + u(v − 1),

and

u = (� − 1)−1(|u|2u + u(v − 1) − iF
)
, (2)

with � = ∂2/∂x2. Also, differentiating (1)(a) with respect to t leads to

iFt + Fxx = 2|u|2F + u2F̄ + Fv + uvt ,

and from (1)(b),

iFt + Fxx = 2|u|2F + u2F̄ + Fv + u|u|2x − uvxf
′(v). (3)

These computations are our motivation to consider the following Cauchy problem:⎧⎪⎨
⎪⎩

iFt + Fxx = 2|u|2F + u2F̄ + Fv + u|ũ|2x − uvxf
′(v), (a)

vt + [
f (v)

]
x

= |ũ|2x, (b)

F(x,0) = F0(x) ∈ H 1(R), v(x,0) = v0(x) ∈ H 2(R),

(4)

where u and ũ are given in terms of F by

u(x, t) = u0 +
t∫
F(x, s)ds and ũ(x, t) = (� − 1)−1(|u|2u + u(v − 1) − iF

)
. (5)
0
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Note that in this system derivative losses do not occur. Indeed, the regularization of (� − 1)−1 puts ũ in H 3 and
therefore the right-hand side of (4)(a) is in H 1, like F .

We will prove the following lemma:

Lemma 2.1. Let (F0, v0) ∈ H 1(R) × H 2(R) and f ∈ C3(R). Then there exists T > 0 and a unique strong solution
(F, v) of the Cauchy problem (4)(a), (b), with

(F, v) ∈ Cj
([0, T ];H 1−2j (R)

) × Cj
([0, T ];H 2−j (R)

)
, j = 0,1.

Here, the life-span T > 0 depends exclusively on f and on the initial data (F0, v0).

This lemma will be proved in the next section, using the general theory of Kato for quasilinear equations [3].
We now explain why Lemma 2.1 implies our main Theorem 1.2:
If (F, v) is a solution of (4), by differentiating (5) with respect to t we obtain ut = F . Replacing in (1)(a) yields

by (4)(b)

(iut + uxx)t = 2|u|2F + u2F̄ + Fv + u|ũ|2x − uvxf
′(v) = 2|u|2ut + u2ūt + utv + uvt .

Hence (iut + uxx − |u|2u − uv)t = 0 and we get iut + uxx − |u|2u − uv = φ0(x), where φ0(x) = iF0(x) + u′′
0(x) −

|u0(x)|2u0(x) − u0(x)v0(x). By setting

F0(x) = i
(
u′′

0(x) − ∣∣u0(x)
∣∣2

u0(x) − u0(x)v0(x)
)
, (6)

we obtain φ0 = 0 and (u, v) satisfies (1)(a). Furthermore, from (1)(a),

u = (� − 1)−1(|u|2u + u(v − 1) − iut

)
. (7)

Therefore u = ũ and (u, v) satisfies (1)(b). Note that ut = F ∈ C([0, T ];H 1(R)). Also

u(·,t) = u0(·) +
t∫

0

F(·,s)ds ∈ C
([0, T ];H 1(R)

)
,

but from (7) we have in fact u ∈ C([0, T ];H 3(R)).

3. Proof of Lemma 2.1

In order to apply a variant of Theorem 6 in [3] we need to set the Cauchy problem (4) in the framework of real
spaces. We introduce the new variables F1 = �F , F2 = �F , u1 = �u, u2 = �u and, with U = (F1,F2, v), F10 = �F0,
F20 = �F0, (4) can be written as follows:⎧⎨

⎩
∂

∂t
U + A(U)U = g(t,U),(

F1(x,0),F2(x,0), v(x,0)
) = (

F10(x),F20(x), v0(x)
) ∈ (

H 1(R)
)2 × H 2(R),

(8)

where

A(U) =
⎡
⎣ 0 � 0

−� 0 0

0 0 f ′(v) ∂
∂x

⎤
⎦

and

g(t,U) =
⎡
⎢⎣

2|u2|F2 − (u2
1 − u2

2)F2 + 2u1u2F1 + F2v + u2|ũ|2x − u2vxf
′(v)

−2|u2|F1 − (u2
1 − u2

2)F1 − 2u1u2F2 − F1v − u1|ũ|2x + u1vxf
′(v)

|ũ|2x

⎤
⎥⎦

which is a nonlocal source term.
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Now we set X = (H−1(R))2 ×L2(R), Y = (H 1(R))2 ×H 2(R) and introduce S :Y → X defined by S = (1−�)I ,
which is an isomorphism. Moreover A :U = (F1,F2, v) ∈ W → G(X,1, β), where W is an open ball in Y centered
at the origin and with radius R and G(X,1, β) denotes the set of all linear operators D in X such that −D generates
a C0-semigroup {e−tD} with∥∥e−tD

∥∥ � eβt , t ∈ [0,+∞[, β = 1

2
sup
x∈R

∣∣f ′′(v(x)
)
vx(x)

∣∣ � cRα(R),

where c > 0 is a numerical constant and α(R) is a continuous function (cf. [3, §8]). It is easy to see that g verifies,
for fixed T > 0, ‖g(t,U)‖Y � λ, t ∈ [0, T ], U ∈ W . Now, with B0(v) ∈ L(L2(R)), v in a ball W1 in H 2(R), B0(v)

defined by (8.7) in [3]

B0(v) = −[
f ′′(v)vxx + f ′′′(v)v2

x

] ∂

∂x
(1 − �)−1 − 2f ′(v)vx

∂2

∂x2
(1 − �)−1,

we introduce an operator B(U) ∈ L(X), U = (F1,F2, v) ∈ W , defined by[0 0 0
0 0 0
0 0 B0(v)

]
.

In [3, §8], Kato proved that for v ∈ W1 we have

(1 − �)

(
f ′(v)

∂

∂x

)
(1 − �)−1 = f ′(v)

∂

∂x
+ B0(v).

Hence, we easily derive, for U ∈ W SA(U)S−1 = A(U) + B(U). Now, for each pair (U,U∗), U = (F1,F2, v) and
U∗ = (F ∗

1 ,F ∗
2 , v∗) in W we will prove that∥∥g(t,U) − g(t,U∗)

∥∥
L1(0,T ′;X)

� c(T ′) sup
0�t�T ′

∥∥U(t) − U∗(t)
∥∥

X
(9)

for T ′ ∈ [0, T ] where c(T ′) is a continuous increasing function such that c(0) = 0.
Let us point out that if h ∈ L2(R) and w ∈ H 1(R) we easily derive

‖hw‖H−1 � ‖h‖H−1‖w‖H 1 .

Hence, for example, we get, with an obvious notation, ‖F1u1(u
∗
1 − u1)‖H−1 � ‖F1‖H 1‖u1‖H 1‖u∗

1 − u1‖H−1 and, for
t � T ′∥∥∥∥∥f ′(v)vx

( t∫
0

F2 dτ −
t∫

0

F ∗
2 dτ

)∥∥∥∥∥
H−1

�
∥∥f ′(v)vx

∥∥
H 1

t∫
0

‖F − F ∗‖H−1 dτ � c(T ′) sup
0�t�T ′

∥∥U(t) − U∗(t)
∥∥

X
,

where c(T ′) is a continuous increasing function such that c(0) = 0. Now, Lemma 2.1 is an easy consequence of
Theorem 6 in [3], where the local condition (7.7) is replaced by (9) which is sufficient for the proof of this theorem.
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