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Abstract

Using a topological arguments due to Aubin–Bahri (1997), we give some existence results for the Webster scalar curvature
problem on the 2n + 1 dimensional CR compact manifolds locally conformally CR equivalent to the unit sphere S2n+1 of C

n+1.
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Résumé

Le problème de la courbure scalaire de Webster sur les variétés CR. Par des arguments topologiques introduits par Aubin–
Bahri (1997), nous donnons quelques résultats d’existence pour le problème de la courbure scalaire de Webster sur les variétés CR
de dimension 2n+ 1 localement conformément CR equivalent à la sphère unité S2n+1 de C

n+1. Pour citer cet article : H. Chtioui,
C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Webster scalar curvature problem

Let (M, θ) be a CR compact manifold of dimension 2n + 1 with a contact form θ and let f : M → R be a C3

positive function. The prescribed Webster scalar curvature on M is to find suitable conditions on f such that f is the
Webster scalar curvature for some contact form θ̃ on M conformally equivalent to θ . If we set θ̃ = u2/nθ , where u is
a smooth positive function on M , then the above problem is equivalent to solve the following equation

(P)

{
(2 + 2

n
)�θu + Rθu = f u1+2/n,

u > 0 in M,

where �θ is the sub-Laplacian operator on (M, θ) and Rθ is the Webster scalar curvature of (M, θ).
Few results have been established on problem (P); in [15], Malchiodi and Uguzzoni considered the case where M =

S2n+1 and gave a perturbative result for problem (P). Their approach uses a perturbation method due to Ambrosetti
and Badiale [1]. In [9], Gamara considered the case where M is locally conformally CR equivalent to the CR sphere
of C

2 and provided an Euler–Hoph type criterion for f to find solution of (P) for n = 1. The method of [9] is due to
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Bahri and Coron [6]. On the contrary, the Yamabe problem on CR manifolds, that is when f is assumed to be constant,
has been widely studied see [10–14].

2. New results

In this Note we focus on the higher dimensional CR manifolds and we give a contribution in the same direction
as in the papers of Aubin–Bahri [2] and Bahri [5] concerning the Riemannian case. Our methods are based on the
techniques related to the theory of critical points at infinity (see [4]). We extend these tools to the framework of such
Eq. (P).

Through this Note, we assume that f has only nondegenerate critical points y0, y1, . . . , y� such that

�f (yi) �= 0 for i = 0, . . . , �.

For a ∈ M and λ � 1, we define a family of ‘almost solutions’ δ̃(a,λ) of the Yamabe problem in M (see section two
of [9]).

Our first main result is the following:

Proposition 2.1. Let n � 2. Assume that (P) has no solution. Then the only critical points at infinity of the associated
variational problem correspond to

p∑
j=1

f (yij )
(2−n)/2δ̃(yij

,∞)

with p ∈ N
∗, yij �= yik for j �= k and −�f (yij ) > 0 for j = 1, . . . , p.

Notice that Proposition 2.1 should be useful for the study of the existence solutions to problem (P). At this point,
we will illustrate its usefulness through the following three results.

Let F+ = {yi, ∇f (yi) = 0 and − �f (yi) > 0}.
(A1) We assume that

f (y0) � f (y1) � · · · � f (yh) > f (yh+1) � · · · � f (y�),

where F+ = {y0, y1, . . . , yh} and 0 � h � �.
(A′

1) We assume that yj /∈ F+ for all j ∈ {h + 1, . . . , �}. In addition, we assume that for every i ∈ {1, . . . , h}, such
that yi /∈ F+, we have

n − m + 3 � ind(f, yi) � n − 2,

where, ind(f, yi) is the Morse index of f at yi and m is an integer defined in the assumption (A2).
(A2) We assume that there exists a pseudo-gradient Z for f of Morse–Smale type, (that is the intersection of the

stable and the unstable manifolds of the critical points of f are transverse) such that the set X is not contractible,
where

X =
⋃

0�i�h

Ws(yi)

and Ws(yi) is the stable manifold of yi for Z. We denote by m the dimension of the first nontrivial reduced homology
group of X.

(A3) We assume that there exists a positive constant c̄ such that c̄ < f (yh) and such that X is deformable to a point
in f c̄ = {x ∈ M | f (x) � c̄}.

We then have:

Theorem 2.1. Let n � 2. There exists a positive constant c0 independent of f such that if f satisfies (A1)–(A3) and
f (y0)/c̄ � 1 + c0, then problem (P) has a solution.

Corollary 2.1. The solution obtained in Theorem 2.1 has an augmented Morse index greater than or equal to m.
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Theorem 2.2. Assume that n � 3. Then, there exists a positive constant c0 independent of f such that if f satisfies
(A′

1), (A2), (A3) and f (y0)/c̄ � 1 + c0, then problem (P) has a solution

Remark 2.1. The result of Theorem 2.1 is true for n = 1, taking F+ in this case the following set,

F+ =
{
yi

∣∣ ∇f (yi) = 0 and − �f (yi)

3f (yi)
− 2Ayi > 0

}

where Ayi is the value of the regular part of the Green’s function of the operator � on M evaluated at yi .

Remark 2.2.

(i) The assumption n � 3 in Theorem 2.2 is needed in order to make (A′
1) meaningful;

(ii) The assumption f (y0)/c̄ � 1 + c0 allows one, basically, to perform a single-bubble analysis;
(iii) To see how to construct an example of a function H satisfying our assumptions, we refer the reader to [3].

Remark 2.3.

(i) The proof of Proposition 2.1 is quite difficult and extremely technical. In principle, it relies on the construction
of a suitable pseudogradient W at infinity as in [5] and [7], which in turn relies on very delicate expansion of the
Euler–Lagrange functional associated to (P) and its gradient near infinity.

(ii) The main idea to prove Theorems 2.1 and 2.2 is to compute the topological contribution of the critical points at
infinity between the level sets of the associated Euler functional and the main issue is under our conditions on f .
There remains some difference of topology not due to the critical points at infinity and therefore the existence of
solution to (P). The details of the proof of our results are given in [8].
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