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Abstract

We consider the problem of the density and drift estimation by the observation of a trajectory of an R
d dimensional homogeneous

diffusion process with a unique invariant density. We construct estimators of the kernel type and study the mean-square and almost
sure uniform asymptotic behavior for these estimators. Finally, we give a class of processes satisfying our assumptions. To cite this
article: A. Bianchi, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Estimation non-paramétrique du terme de dérive dans un processus de diffusion multidimensionnel. On considère le pro-
blème de l’estimation de la densité et du terme de dérive par l’observation d’une trajectoire d’un processus de diffusion homogène
en dimension d ayant une densité invariante unique. On construit les estimateurs par la méthode des noyaux, puis on en étudie le
comportement asymptotique en L2 et presque sûr. Finalement, on donne à titre d’exemple une classe de processus qui satisfont nos
hypothèses. Pour citer cet article : A. Bianchi, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

On étudie un processus de diffusion {Xt } homogène en dimension d et défini par (1). On suppose que ce processus
admet une densité invariante unique f (·). Si la valeur initiale X0 a pour densité f (·) alors le processus {Xt } est
strictement stationnaire. L’objectif de cette Note est d’estimer le terme de dérive de {Xt } à partir de l’observation
d’une trajectoire.

Pour estimer f (·) on utilise l’estimateur classique de la densité par noyaux (2). Ensuite on définit l’estimateur
f ′

i,T (i = 1, . . . , d) pour les dérivées de la densité (3). Enfin à partir de l’équation forward de Kolmogorov, on en
déduit un estimateur pour le terme de dérive (4). Enfin, on établit, sous des hypothèses convenables, le comportement
asymptotique en L2 et presque sûr uniforme de ces estimateurs.

E-mail address: abianchi@mat.unimi.it.
1631-073X/$ – see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2007.05.012
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1. Trend coefficient estimation

Let {Xt } be an R
d -dimensional homogeneous diffusion process defined by

dXt = S(Xt )dt + dWt, X0, 0 � t � T , (1)

where {Wt, t � 0} is a standard d-dimensional Wiener process, S : Rd → R
d is an (unknown) drift coefficient and

X0 is an initial value of Xt , which is assumed to be not dependent on the Wiener process. In our setup, the diffusion
coefficient σ(·)2 is supposed to be the identity matrix; in the general case, it is identifiable using the quadratic variation
of the process. Moreover, recall that we can reduce a multidimensional diffusion process to form (1), under suitable
conditions on σ (see [1]). Finally we suppose that S(·) belongs to the class of functions Sd satisfying:

(A1) S is a Lipschitz function;
(A2) there exist constants M0 � 0 and r > 0 such that(

S(x),
x

‖x‖
)

� − r

‖x‖p
, 0 � p < 1, ‖x‖ � M0,

where (· , ·) denotes the scalar product in R
d ;

(A3) the potential conditions hold

∂Sj

∂xk

= ∂Sk

∂xj

, ∀j, k = 1, . . . , d;
(A4) S is twice continuously differentiable, with the first and second partial derivatives satisfying the linear growth

condition.

We remark that Assumption (A1) guarantees the existence of a unique strong solution to Eq. (1) (see [5]). Assump-
tion (A2) implies the existence of an invariant measure for the process, the convergence of the transition probability
to this invariant measure with (sub)exponential rate and the strong mixing property (see [11] and [12]). From now on
we assume that the initial value X0 follows the invariant law, ensuring thus the strong stationarity of the process {Xt }.
Moreover, since the diffusion coefficient σ 2 ≡ I is non degenerate, from (A1) we deduce that the invariant measure
admits a density f (·) with respect to the Lebesgue measure.

We are now interested in the estimation of the trend coefficient S, by the observation of a trajectory of the process
over a time interval [0, T ]. The method we follow passes through the estimation of f and its derivatives first. It is
worthwhile to remark that, while the statistical theory for the scalar case has been very well developed (refer to [7]),
there are still few results concerning the multidimensional context.

As far as the invariant density is concerned, we use the standard kernel density estimator defined by

fT (x) = 1

T hd
T

T∫
0

K

(
x − Xt

hT

)
dt, x ∈ R

d , (2)

where hT → 0+, as T → +∞ and K : R
d → R is a bounded probability density function such that for j = 1, . . . , d

(K1)
∫

Rd K(u1, . . . , ud)uj du1 · · ·dud = 0,
(K2)

∫
Rd ‖u‖|uj |K(u1, . . . , ud)du1 · · ·dud < +∞.

Under Assumptions (A2) and (A3) the density function f admits a gradient f ′ = (f ′
1, . . . , f

′
d), with f ′

i = ∂f
∂xi

,
i = 1, . . . , d . As far as f ′(x) is concerned, we consider the estimator f ′

T = (f ′
1,T , . . . , f ′

d,T ), with components

f ′
i,T (x) = 1

T hd+1
T

T∫
0

K ′
i

(
x − Xt

hT

)
dt, x ∈ R

d, i = 1, . . . , d, (3)

where hT → 0+ as T → +∞ and K(·) is a kernel which satisfies conditions (K1) and (K2) and moreover is such
that:
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(K3) K ′
i = ∂K

∂xi
exists and is continuous everywhere for i = 1, . . . , d ;

(K4)
∫

Rd |K ′
i (u)|du < +∞, i = 1, . . . , d ;

(K5) K(·) has bounded and continuous second partial derivatives.

We are now able to define the estimator for the trend coefficient. Thanks to Assumption (A3), from the Kolmogorov
forward equation we deduce that for x ∈ R

d fixed the invariant density f satisfies the relation f ′(x) = 2S(x)f (x),
x ∈ R

d (see [10]). Therefore a natural estimator for S(·) is

ST (x) = f ′
T (x)

2fT (x) + εT

, x ∈ R
d, (4)

with εT → 0+ as T → +∞. We have added εT at the denominator since for finite values of T , fT (x) may be very
close or even equal to zero. In the next sections, we will choose εT and the hT ’s depending on the type of convergence.

2. Mean-square asymptotic behavior

In the present section we are interested in studying the asymptotic behavior of the estimators defined above in the
mean-square sense. An important property of multidimensional diffusion processes is that, unlike the scalar case, the
classical Castellana and Leadbetter condition does not hold anymore. Indeed, the joint density fu(x, y) of the pair
(X0,Xu), u > 0, is not integrable in a neighborhood of u = 0, since fu(x, y) � Cu−d/2, C > 0, for u ∈ (0,1] (see [9],
Theorem 3.1). This implies that the kernel density estimator (2) cannot reach the parametric rate 1/T (refer to [4]). In
the next proposition we show that this estimator converges with intermediate rates.

Proposition 2.1. For all S ∈ Sd , for all kernels K(·) satisfying conditions (K1) and (K2) and for hT = c( lnT
T

)1/4

(c > 0) if d = 2, and hT = cT −1/(d+2) (c > 0) if d > 2

lim sup
T →+∞

Γ 2
T (d)E

[(
fT (x) − f (x)

)2]
< +∞,

where ΓT (d) = ( T
lnT

)1/2 if d = 2, and ΓT (d) = T 2/(d+2) if d > 2.

This proposition follows from the results by Blanke and Bosq [3], where intermediate rates for kernel density
estimators are provided under slightly weaker conditions than the Castellana and Leadbetter one. These rates depend
on the local behavior of the joint density fu(x, y), when u is small. Using results in [9] and [12], it is easy to see that
for all S ∈ Sd , process (1) satisfies the conditions presented in [3]. From [3], it follows also that the previous rates are
sharp, since a lower bound for the quadratic risk can be proved. Moreover, these rates turn out to be minimax in the
sense that if the kernel estimator reaches an intermediate rate over a class of processes, than no better estimator exists
over that class.

We turn now to the analysis of f ′
T . We expect slower rates of convergence compared to the density ones (see [8]).

The following proposition shows the asymptotic behavior of f ′
T :

Proposition 2.2. For all S ∈ Sd , for all kernels K(·) satisfying conditions (K1)–(K4) and for hT = c( lnT
T

)1/6 (c > 0)
if d = 2, and hT = cT −1/(d+4) (c > 0) if d > 2, we obtain that

lim sup
T →+∞

Φ2
T (d)E

[∥∥f ′
T (x) − f ′(x)

∥∥2]
< +∞,

where ΦT (d) = ( T
lnT

)1/3 if d = 2, ΦT (d) = T 2/(d+4) if d > 2, and ‖ · ‖ is the Euclidean norm in R
d .

In the proof we mainly follow the methods used by Blanke and Bosq [3], and we adapt them to the case of the
density derivative.

Using the previous results and a suitable decomposition we find the mean-square asymptotic behavior for the trend
coefficient.
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Proposition 2.3. Under the assumptions of Propositions 2.1 and 2.2 and for εT = T −1/2 if d = 2, and εT =
(T lnT )−2/(d+2) if d > 2, we obtain that

lim sup
T →+∞

Φ2
T (d)E

[∥∥ST (x) − S(x)
∥∥2]

< +∞,

where ΦT (d) is defined in Proposition 2.2.

The proof is based on the following decomposition

Si,T − Si = 1

2fT + εT

(f ′
i,T − Ef ′

i,T ) + Ef ′
i,T

(
1

2fT + εT

− 1

2f

)
+ 1

2f
(Ef ′

i,T − f ′
i ), i = 1, . . . , d, (5)

and the fact that P(2fT + εT < EfT ) tends to zero exponentially fast as T → +∞, thanks to an exponential type
inequality (Theorem 1.3 in [4]). Indeed, using the inequality (a +b+ c+d)2 � 4(a2 +b2 + c2 +d2) in (5) and taking
the expectations, we can use the majoration 1

2fT +εT
� 1

EfT
, the remaining part being negligible. Results close to those

presented in this section were independently obtained in [6]. However, the approach of this Note may be of interest,
since the estimators employed and the methods used in the proofs are different.

3. Almost sure behavior

In this section we study the almost sure uniform convergence of f , f ′
T and ST .

Proposition 3.1. For all S ∈ Sd , for all kernels K(·) with compact support and satisfying conditions (K1)–(K3), and

for hT = c(
(logT )1+1/δ

T
)1/(d+2), c > 0,

lim sup
T →+∞

(
T

(logT )1+1/δ

)2/(d+2)

sup
x∈Rd

∣∣fT (x) − f (x)
∣∣ < +∞ a.s.,

where δ = (1 − p)/(1 + p), p being the exponent appearing in condition (A2).

This proposition is a consequence of a more general result by Blanke [2], where she proves the strong uniform
convergence for kernel density estimators in continuous time.

Concerning the estimator of the density derivative, we have the following result:

Proposition 3.2. For all S ∈ Sd , for all kernels K(·) with compact support and satisfying conditions (K1)–(K5), and

for hT = c(
(logT )1+1/δ

T
)1/(d+2) (c > 0) we obtain that

lim sup
T →+∞

ΨT (d) sup
x∈Rd

∥∥f ′
T (x) − f ′(x)

∥∥ < +∞ a.s.,

where ΨT (d) = ( T 1/3

logT
) if d = 2, ΨT (d) = ( T 2/(d+4)

(logT )1/2 ) if d > 2.

In order to prove this result we mainly adapt the methods used by Blanke [2] to the estimation of the density
derivative. First we prove the pointwise strong consistency by using a Benstein’s type inequality together with a
slight variation of the Borel–Cantelli lemma for continuous time processes [4], thanks to the uniform continuity of
the function T 	→ ΨT (d)f ′

T . Then we study the uniform strong consistency over an increasing sequence of compact
subsets of R

d , using the Lipschitzianity of K ′
i , i = 1, . . . , d . Finally we extend the result to the whole R

d thanks to
the continuity and the integrability of f ′(x) and the fact that f ′

T (x) tends to zero almost surely sufficiently fast as
‖x‖ → +∞.

As far as the trend coefficient is concerned, it follows immediately that, for x ∈ R
d fixed, ST (x) converges almost

surely to S(x), because ST is a continuous function of fT , f ′
T and εT . By choosing, for example, εT as in Propo-

sition 2.3 the convergence rate is ΨT (d), which was defined above. We recognize in the supnorm rates obtained in
Propositions 3.1 and 3.2 the same rates, up to logarithmic factors, as those presented for the mean-square error.
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Concerning the uniform convergence of ST , it can be obtained over compact sets, but in general not over
the whole R

d , since the lower bound for f over R
d is zero. On the other hand, for any compact set K ⊂ R

d ,
infx∈K f (x) > 0. Moreover, in order to apply a modification of the Borel–Cantelli lemma in continuous time (see [4]
and [3]), we need the uniform continuity of the function T 	→ supx∈K ST (x). In order to have this property we decrease
the rate of convergence of the estimator.

Proposition 3.3. Under the assumptions of Propositions 3.1 and 3.2 and for εT = T −1/(d+2) and for any compact set
K ⊂ R

d , we have that

lim sup
T →+∞

T
1

d+2 sup
x∈K

∥∥ST (x) − S(x)
∥∥ < +∞ a.s.

The proof is based on decomposition (5) and the fact that

P

(
lim sup
T →+∞

sup
x∈K

1

2fT + εT

< +∞
)

= 1.

The last statement may be easily proved by following the same scheme as the one described for the density derivative.

4. Examples

We can easily verify that the classical Ornstein–Uhlenbeck process

dXt = BXt dt + dWt,

where B = (bij )1�i,j�d , with bij = bji , i �= j and detB > 0, trB < 0, satisfies our conditions.
Another possible example is the stochastic process described by the following system of equations

dXk,t = −
[
∇U(Xk,t ) + θ

N

N∑
l=1

(Xk,t − Xl,t )

]
dt + dWk,t , k = 1, . . . ,N,

where W1, . . . ,WN are independent d-dimensional Wiener processes and θ � 0 denotes a constant. The function
U(x), x ∈ R

d , is called potential; we can take, for example, U(x) = x2.
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