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Abstract

A new construction relating formal groups, a class of Appell polynomials called the universal Bernoulli polynomials and a
family of Dirichlet L-series is proposed. Universal Bernoulli χ -numbers as well as generalized Riemann–Hurwitz zeta functions
are introduced. To cite this article: P. Tempesta, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Groupes formels, polynômes de type Bernoulli et séries L. On propose une nouvelle construction qui relie les groupes formels
à une classe de polynomes de Appell qu’ on appelle polynômes de Bernoulli universels et à une famille de séries de Dirichlet.
On introduit aussi les nombres de Bernoulli universels liés à un caractère de Dirichlet χ et une généralisation des fonctions de
Riemann–Hurwitz. Pour citer cet article : P. Tempesta, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The aim of this Note is to present the following construction: we associate with formal group laws new sequences
of Bernoulli-type polynomials and Dirichlet L-series, in such a way that the correspondence between the classical
Bernoulli polynomials and the Riemann zeta function is generalized.

As is well known, formal groups are relevant in many branches of mathematics, especially in the theory of elliptic
curves [8], in algebraic topology [2] and analytic number theory [5]. We propose the following definition:

Definition 1.1. Let us consider the formal group logarithm, defined over the polynomial ring Q[c1, c2, . . .]

F(s) = s + c1
s2

2
+ c2

s3

3
+ · · · . (1)

Let G(t) be the associated formal group exponential:

G(t) = t − c1
t2

2! + (
3c2

1 − 2c2
) t3

6! + · · · (2)
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so that F(G(t)) = t . The universal higher-order Bernoulli polynomials BG
k,a(x, c1, c2, . . .) ≡ BG

k,a(x) are defined by

(
t

G(t)

)a

ext =
∑
k�0

BG
k,a(x)

tk

k! , x, a ∈ R. (3)

When a = 1, and ci = (−1)i , then F(s) = log(1 + s), G(t) = et − 1, and the universal Bernoulli polynomials
and numbers reduce to the standard ones. In this Note, only the case a = 1 will be considered. By construction, the
numbers BG

k,1(0) ∈ Q[c1, . . . , ck] coincide with the universal Bernoulli numbers introduced by Clarke in [4]. The
name comes from the fact that G(F(s1) + F(s2)) is the universal formal group [5], which is defined over the Lazard
ring L, i.e. the subring of Q[c1, c2, . . .] generated by the coefficients of the power series G(F(s1) + F(s2)). The
role of the Lazard group in algebraic topology has been clarified in [2]. For sake of simplicity, we put BG

k,1(x) ≡
BG

k (x) and BG
k (0) ≡ BG

k . The classical Bernoulli numbers are fundamental in many branches of mathematics, like
algebraic number theory and combinatorics, and have also applications in the Hirzebruch signature theorem, the
computation of Todd characteristic classes and Gromov–Witten invariants. The universal Bernoulli numbers play as
well an important role, in particular in complex cobordism theory (see e.g. [3], and [6]), where the coefficients cn

are identified with the cobordism classes of CP n. They also obey generalizations of the celebrated Kummer and
Clausen–von Staudt congruences [1]. Many properties of the polynomials (3) are discussed in the paper [9]. The
Appell property is expressed by

BG
n,a(x + y) =

n∑
k=0

(
n

k

)
BG

k,a(y)xn−k. (4)

In [9], it is shown that interesting realizations of the class of polynomials (3) can be constructed using the finite
operator theory, introduced by G.C. Rota [7]. The formal exponential G(t) is chosen to be the representative of
a difference delta operator. This means that G(t) is a Laurent polynomial in et (that we choose to have rational
coefficients), obeying two more constraints:

G(t) =
m∑

k=l

akekt , l,m ∈ Z, l < m, (5)

with the two constraints

m∑
k=l

ak = 0,

m∑
k=l

kak = 1.

Let χ be a nontrivial Dirichlet character. It is also natural to generalize the Bernoulli numbers Bn,χ .

Definition 1.2. Let χ be a nontrivial Dirichlet character of conductor N . The universal Bernoulli χ -numbers BG
k,χ

associated with the formal group G are defined by

Nk−1
N∑

b=1

χ(b)BG
k

(
b

N

)
= BG

k,χ . (6)

Taking into account the summation formula for the universal Bernoulli polynomials, valid since they represent an
Appell sequence for any choice of G, we obtain another equivalent representation for the numbers BG

k,χ :

BG
k,χ =

N∑
b=1

χ(b)

k∑
j=0

(
k

j

)
BG

j bk−jNj−1. (7)
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2. L-series and formal groups

In this section, we will associate certain L-series with the class of polynomials (3). The Riemann zeta function is
the most elementary example of the construction we propose. Let �(s) = ∫ ∞

0 e−t t s−1 dt be the � Euler function. As
is well known, if Re s > 1,

ζ(s) = 1

�(s)

∞∫
0

1

et − 1
t s−1 dt.

More generally, by imposing suitable analytic constraints on the considered formal group exponentials, we can
construct related classes of L-series. Precisely the following result holds:

Theorem 2.1. Let G(t) be a formal group exponential of the form (2), such that 1/G(t) is a C∞ function over R+,
rapidly decreasing at infinity.

(i) The function

L(G, s) = 1

�(s)

∞∫
0

1

G(t)
ts−1 dt, (8)

defined for Re s > 1 admits an holomorphic continuation to the whole C and, for every k ∈ N, we have

L(G,−k) = (−1)k
BG

k+1

k + 1
∈ Q[c1, c2, . . .]. (9)

(ii) If G(t) is also of the form (5), for Re s > 1 the function L(G, s) can be represented in terms of a Dirichlet series

L(G, s) =
∞∑

n=1

an

ns
, (10)

where the coefficients an are obtained as the coefficients of the formal expansion

1

G(t)
=

∞∑
n=1

an e−nt . (11)

Assuming that G(t) � et − 1, the series L(G, s) is absolutely convergent for Re s > 1, and∣∣∣∣∣
∞∑

n=1

an

ns

∣∣∣∣∣ �
∞∑

n=1

1

nRe s
. (12)

Remark 2.1. Note that the functional relation L(G, s) = L(G′, s + 1) holds.

Remark 2.2. A construction of L-series based on formal group laws is well known in the literature [5]. One of the
advantages of the simple construction proposed here is that the associated L-functions are directly related to the
universal Bernoulli numbers, whose algebraic and combinatorial properties are particularly rich.

3. Generalized Riemann–Hurwitz zeta functions

The previous ideas can be used to introduce a generalized Riemann–Hurwitz zeta function and to connect it in a
natural way with the generalized Bernoulli polynomials (3).

The Riemann–Hurwitz zeta function is defined by the series

ζ(s, v) =
∞∑

(n + v)−s , (13)

n=0
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for v > 0. As is well known, this series converges absolutely for Re s > 1 and it extends to a meromorphic function
in C. The Riemann–Hurwitz zeta function for k ∈ N takes the special values

ζ(−k, v) = −Bk+1(v)

k + 1
, (14)

where Bk(x) is the k-th classical Bernoulli polynomial. According to the previous scheme, we propose the following
generalization of ζ(s, v):

Definition 3.1. Let G(t) be a formal group exponential, such that 1/G(t) is a C∞ function over R+, rapidly decreasing
at infinity. The generalized Riemann–Hurwitz zeta function associated with G is the function ζ(G, s, v), defined for
Re s > 1 by

ζ(G, s, v) = 1

�(s)

∞∫
0

ex(1−v)

G(x)
xs−1 dx. (15)

Corollary 3.2. The following property holds:

ζ(G,−k, v) = −BG
k+1(v)

k + 1
, (16)

where BG
k (x) is the k-th Bernoulli-type polynomial associated with the considered formal group.
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