

Available online at www.sciencedirect.com

COMPTES RENDUS MATHEMATIQUE

C. R. Acad. Sci. Paris, Ser. I 345 (2007) 31-34

http://france.elsevier.com/direct/CRASS1/

Algebraic Geometry

Semi-universal deformation spaces of some simple elliptic singularities

Kazunori Nakamoto^a, Meral Tosun^b

^a Center for Life Science Research, University of Yamanashi, 1110 Shimokatou, Tamaho-cho, Nakakoma-gun, Yamanashi 409-3898, Japan ^b Yildiz Technical University, Istanbul, Turkey and Feza Gursey Institute, Çengelköy, Istanbul, Turkey

Received 22 December 2006; accepted after revision 4 May 2007

Presented by Bernard Malgrange

Abstract

In this Note, we deal with the simple elliptic singularities of type \tilde{D}_5 . By using the Lie algebra $sl(2, \mathbb{C}) \oplus sl(2, \mathbb{C})$, we construct semi-universal deformation spaces of these singularities. *To cite this article: K. Nakamoto, M. Tosun, C. R. Acad. Sci. Paris, Ser. I* 345 (2007).

© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Déformation semi-universelle des singularités elliptiques simples. Dans cette Note, nous traitons les singularités elliptiques simples du type \tilde{D}_5 . En utilisant l'algèbre de Lie $sl(2, \mathbb{C}) \oplus sl(2, \mathbb{C})$, nous construisons des espaces de déformation semi-universelle de ces singularités. *Pour citer cet article : K. Nakamoto, M. Tosun, C. R. Acad. Sci. Paris, Ser. I 345 (2007).* © 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Simple elliptic singularities of normal surfaces were defined by Saito in [5], and several special types were named as \tilde{E}_6 , \tilde{E}_7 , \tilde{E}_8 and \tilde{D}_5 . Beyond Grothendieck–Brieskorn theory on the relation between simple singularities of surfaces and simple Lie algebras (see [1,7]), many mathematicians tried to discover some similar relations between simple elliptic singularities and Lie algebras or related objects ([4,6] and so on).

Here we construct the simple elliptic singularities of type \tilde{D}_5 and their semi-universal deformation spaces by using $sl(2, \mathbb{C}) \oplus sl(2, \mathbb{C})$. This construction contrasts with the one of Helmke and Slodowy [2] who used a loop group, i.e. an infinite dimensional object.

2. Nilpotent variety and its singularities

Let \mathfrak{g} be a finite dimensional Lie algebra over \mathbb{C} . The nilpotent variety $\mathcal{N}(\mathfrak{g})$ of \mathfrak{g} is defined as $\mathcal{N}(\mathfrak{g}) := \{x \in \mathfrak{g} \mid Ad(x) : \mathfrak{g} \to \mathfrak{g} \text{ is nilpotent}\}.$

E-mail addresses: nakamoto@yamanashi.ac.jp (K. Nakamoto), tosun@gursey.gov.fr (M. Tosun).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences. doi:10.1016/j.crma.2007.05.018

In the case of $\mathfrak{g} = sl(2, \mathbb{C}) \oplus sl(2, \mathbb{C})$ the nilpotent variety $\mathcal{N} := \mathcal{N}(\mathfrak{g})$ is

$$\mathcal{N} = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \middle| a^2 + bc = 0 \right\} \times \left\{ \begin{pmatrix} d & e \\ f & -d \end{pmatrix} \middle| d^2 + ef = 0 \right\}.$$

Let us consider a 4-dimensional affine subspace S of \mathfrak{g} passing through the origin $0 = (O, O) \in \mathcal{N}$. We say that S is a *generic slice at* 0 if the intersection $\mathcal{N} \cap S$ is an isolated surface singularity at 0. In the sequel, we assume that S is a generic slice.

Remark 2.1. More precisely, we can define the genericity of slices in the following way: Let us fix an isomorphism $S \cong \mathbb{C}^4$. A quadratic equation in *S* can be written as $(x, y, z, t)^t A(x, y, z, t) = 0$ with *A* a symmetric 4×4 matrix. Hence, for a slice *S*, we obtain two quadratic equations $f = (a^2 + bc)|_S$ and $g = (d^2 + ef)|_S$ in \mathbb{C}^4 which are expressed by symmetric matrices *A* and *B*, respectively. We say that *S* is generic if the discriminant of the polynomial det(tA + B) is non-zero (see [3]).

Proposition 2.2. With the preceding notation, the surface singularity $(X, 0) := (\mathcal{N} \cap \mathcal{S}, 0)$ is a simple elliptic singularity of type \tilde{D}_5 .

Proof. Let \tilde{S} be the blowing up of $S \cong \mathbb{C}^4$ at 0. By taking the strict transform \tilde{X} of X, we have

 $\begin{array}{l} \mathbb{P}^3 \subset \tilde{\mathcal{S}} \to \mathcal{S} \\ \cup & \cup & \cup \\ E \subset \tilde{X} \to X, \end{array}$

where *E* is the exceptional curve. Since *X* is defined by two quadratic equations in *S*, the exceptional curve *E* will be defined by two generic quadratic equations in \mathbb{P}^3 . Hence *E* is an elliptic curve and $E^2 = -4$. Therefore (*X*, 0) is a simple elliptic singularity of type \tilde{D}_5 (see [5]). \Box

3. Semi-universal deformations

It is well known that (X, 0) has a semi-universal deformation space, the base space is non-singular of dimension dim T^1 and, dim $T^2 = 0$ [8].

Proposition 3.1. For each \tilde{D}_5 -singularity, dim $T^1 = 7$.

Proof. Any singularities of type \tilde{D}_5 are given by the equations $f = x_1^2 + x_2^2 + \lambda x_3 x_4 = 0$ and $g = x_1 x_2 + x_3^2 + x_4^2 = 0$ in \mathbb{C}^4 with some $\lambda \in \mathbb{C} \setminus \{0, \pm 4\}$. Then an easy calculation gives dim $T^1 = 7$. \Box

To construct semi-universal deformations of \tilde{D}_5 -singularity, we will first restrict ourselves to the special case where $S_0 := \{c = d + e, f = a + b\} \subset \mathfrak{g}$ and denote $(X_0, 0) := (\mathcal{N} \cap S_0, 0)$. Consider a Cartan subalgebra \mathfrak{h} of \mathfrak{g} defined as

$$\mathfrak{h} := \left\{ \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix} \right\} \oplus \left\{ \begin{pmatrix} d & 0 \\ 0 & -d \end{pmatrix} \right\}.$$

The adjoint quotient $\mathfrak{g} \to \mathfrak{h}/W$ can be regarded as

$$\chi: \qquad \mathfrak{g} \qquad \to \qquad \mathfrak{h}/W \cong \mathbb{C}^2, \\ \left(\begin{pmatrix} a & b \\ c & -a \end{pmatrix}, \begin{pmatrix} d & e \\ f & -d \end{pmatrix} \right) \mapsto (-a^2 - bc, -d^2 - ef),$$

where *W* is the Weyl group of \mathfrak{g} which is isomorphic to $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Let us deform the adjoint quotient χ by $(\alpha, \beta) \in \mathbb{C}^2$ as

$$\begin{array}{ccc} f_{(\alpha,\beta)} \colon & \mathfrak{g} & \to & \mathfrak{h}/W \cong \mathbb{C}^2, \\ & \left(\begin{pmatrix} a & b \\ c & -a \end{pmatrix}, \begin{pmatrix} d & e \\ f & -d \end{pmatrix} \right) \mapsto (-a^2 - bc - \alpha e, -d^2 - ef - \beta b). \end{array}$$

When $(\alpha, \beta) = (0, 0)$, we have $f_{(0,0)} = \chi$. And, let us deform the slice S_0 by $(\gamma, \delta, \varepsilon) \in \mathbb{C}^3$ as

$$\mathcal{S}_{(\gamma,\delta,\varepsilon)} := \{ c = d + e + \gamma, f = a + b + \delta e + \varepsilon \}.$$

For $(\gamma, \delta, \varepsilon) = (0, 0, 0)$, we have $S_{(0,0,0)} = S_0$.

Theorem 3.2. With the preceding notation, consider

 $S := \mathbb{C}^2 \times \mathbb{C}^3 \times \mathfrak{h} / W = \{ (\alpha, \beta) \in \mathbb{C}^2 \} \times \{ (\gamma, \delta, \varepsilon) \in \mathbb{C}^3 \} \times \{ (\lambda, \mu) \in \mathfrak{h} / W \}.$

Let \mathcal{X} be the family of surfaces on S defined as

 $\mathcal{X} := \{ (X, \alpha, \beta, \gamma, \delta, \epsilon, \lambda, \mu) \in \mathfrak{g} \times S \mid f_{(\alpha, \beta)}(X) = (\lambda, \mu), X \in \mathcal{S}_{(\gamma, \delta, \varepsilon)} \}.$

Set $o := (0, 0, 0, 0, 0, 0, 0) \in S$ and $q := (0, o) \in \mathcal{X}$. Then the morphism of germs $(\mathcal{X}, q) \to (S, o)$ gives a semiuniversal deformation of $(X_0, 0)$.

Proof. The coordinate ring \mathcal{O}_{X_0} of $(X_0, 0)$ is isomorphic to $\mathbb{C}\{a, b, d, e\}/(g_1, g_2)$, where $g_1 = a^2 + bd + be$ and $g_2 = d^2 + ae + be$. The \mathbb{C} -vector space $T^1 = \mathcal{O}_{X_0}^2/M$, where M is the \mathcal{O}_{X_0} -submodule of $\mathcal{O}_{X_0}^2$ generated by the 4 vectors: $(\frac{\partial g_1}{\partial a}, \frac{\partial g_2}{\partial d}), (\frac{\partial g_1}{\partial d}, \frac{\partial g_2}{\partial d})$ and $(\frac{\partial g_1}{\partial e}, \frac{\partial g_2}{\partial e})$. Since $f_{(\alpha,\beta)}(X) = (-a^2 - bc - \alpha e, -d^2 - ef - \beta b)$ and $c = d + e + \gamma$, $f = a + b + \delta e + \varepsilon$ for $X \in S_{(\gamma,\delta,\varepsilon)}$, the formula Y is defined by

family \mathcal{X} is defined by

$$f_1 := a^2 + bd + be + \gamma b + \alpha e + \lambda = 0$$

$$f_2 := d^2 + ae + be + \delta e^2 + \varepsilon e + \beta b + \mu = 0$$

Note that we have

$$(f_1, f_2) = (g_1, g_2) + \alpha(e, 0) + \beta(0, b) + \gamma(b, 0) + \delta(0, e^2) + \varepsilon(0, e) + \lambda(1, 0) + \mu(0, 1)$$

and the 7 vectors appeared over $(e, 0), (0, b), (b, 0), (0, e^2), (0, e), (1, 0), and (0, 1)$ form a basis for T^1 . Hence the family $(\mathcal{X}, q) \to (S, o)$ induces an isomorphism from S to T^1 . Therefore $(\mathcal{X}, q) \to (S, o)$ is isomorphic to a semi-universal deformation of $(X_0, 0)$. \Box

Now we want to construct semi-universal deformation spaces for a general transversal slice. For this, consider the space $Aff(\mathfrak{g}, 4)$ of all 4-dimensional affine subspaces of \mathfrak{g} . Since any 4-dimensional affine subspace of \mathfrak{g} can be described by two linear equations, Aff(g, 4) is embedded in the Grassmann variety $Grass(\dim g + 1, 2) = Grass(7, 2)$. The space of all 4-dimensional linear subspaces $Grass(\mathfrak{g}, 4)$ of \mathfrak{g} is a closed subvariety of $Aff(\mathfrak{g}, 4)$.

By Proposition 2.2, $(\mathcal{N} \cap \mathcal{S}, 0)$ gives us a \tilde{D}_5 -singularity for a general \mathcal{S} in Grass($\mathfrak{g}, 4$). Then we obtain:

Theorem 3.3. Let S be a general element of $Grass(\mathfrak{g}, 4)$. Let S_* be a 'general' 3-dimensional subvariety passing through S of Aff(q, 4). Set

 $S := \mathbb{C}^2 \times \mathcal{S}_* \times \mathfrak{h} / W = \{ (\alpha, \beta) \in \mathbb{C}^2 \} \times \{ \mathcal{T} \in \mathcal{S}_* \} \times \{ (\lambda, \mu) \in \mathfrak{h} / W \cong \mathbb{C}^2 \}$

and

$$\mathcal{X} := \left\{ (X, \alpha, \beta, \mathcal{T}, \lambda, \mu) \in \mathfrak{g} \times S \mid f_{(\alpha, \beta)}(X) = (\lambda, \mu), X \in \mathcal{T} \right\}.$$

Then the morphism of germs $(\mathcal{X},q) \to (S,o)$ gives us a semi-universal deformation of $(\mathcal{N} \cap \mathcal{S},0)$, where o =(0, 0, S, 0, 0) and q = (0, o).

Proof. The condition that 7 vectors are linearly independent in $T^1 = \mathcal{O}_{\mathcal{N} \cap \mathcal{S}}^2 / M$ is open for $\mathcal{S} \in \text{Grass}(\mathfrak{g}, 4)$. Hence the condition that a given family becomes a semi-universal deformation is also open. Then we can choose a suitable 3-dimensional subvariety of Aff(g, 4), which implies the meaning of the word 'general'.

References

- [1] E. Brieskorn, Singular elements of semisimple algebraic groups, Actes Congrès Int. Math. 2 (1970) 279-284.
- [2] S. Helmke, P. Slodowy, Loop groups, elliptic singularities and principal bundles over elliptic curves, in: Geometry and Topology of Caustics, CAUSTICS '02, in: Banach Cent. Publ., vol. 62, 2004, pp. 87–99.
- [3] K. Nakamoto, M. Tosun, Geometry of simple elliptic singularities via Lie algebras, in preparation.
- [4] K. Saito, Quasihomogene isolierte Singularitaten von Hyperflachen, Invent. Math. 14 (1971) 123–142.
- [5] K. Saito, Einfach-elliptische Singularitaten, Invent. Math. 23 (1974) 289-325.
- [6] K. Saito, D. Yoshii, Extended affine root system. IV. Simply-laced elliptic Lie algebras, Publ. Res. Inst. Math. Sci. 36 (3) (2000) 385-421.
- [7] P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lecture Notes Math., vol. 815, Springer, Berlin, 1980.
- [8] G.N. Tjurina, Locally semiuniversal flat deformations of isolated singularities of complex spaces, Izv. Akad. Nauk SSSR, Ser. Mat. 33 (5) (1970) 967–999.