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Abstract

In this Note, we deal with the simple elliptic singularities of type D̃5. By using the Lie algebra sl(2,C) ⊕ sl(2,C), we construct
semi-universal deformation spaces of these singularities. To cite this article: K. Nakamoto, M. Tosun, C. R. Acad. Sci. Paris, Ser. I
345 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Déformation semi-universelle des singularités elliptiques simples. Dans cette Note, nous traitons les singularités elliptiques
simples du type D̃5. En utilisant l’algèbre de Lie sl(2,C)⊕sl(2,C), nous construisons des espaces de déformation semi-universelle
de ces singularités. Pour citer cet article : K. Nakamoto, M. Tosun, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Simple elliptic singularities of normal surfaces were defined by Saito in [5], and several special types were named as
Ẽ6, Ẽ7, Ẽ8 and D̃5. Beyond Grothendieck–Brieskorn theory on the relation between simple singularities of surfaces
and simple Lie algebras (see [1,7]), many mathematicians tried to discover some similar relations between simple
elliptic singularities and Lie algebras or related objects ([4,6] and so on).

Here we construct the simple elliptic singularities of type D̃5 and their semi-universal deformation spaces by using
sl(2,C) ⊕ sl(2,C). This construction contrasts with the one of Helmke and Slodowy [2] who used a loop group, i.e.
an infinite dimensional object.

2. Nilpotent variety and its singularities

Let g be a finite dimensional Lie algebra over C. The nilpotent variety N (g) of g is defined as N (g) := {x ∈ g |
Ad(x) : g → g is nilpotent}.
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In the case of g = sl(2,C) ⊕ sl(2,C) the nilpotent variety N := N (g) is

N =
{ (

a b

c −a

)
a2 + bc = 0

}
×

{ (
d e

f −d

)
d2 + ef = 0

}
.

Let us consider a 4-dimensional affine subspace S of g passing through the origin 0 = (O,O) ∈ N . We say that S is
a generic slice at 0 if the intersection N ∩ S is an isolated surface singularity at 0. In the sequel, we assume that S is
a generic slice.

Remark 2.1. More precisely, we can define the genericity of slices in the following way: Let us fix an isomorphism
S ∼= C

4. A quadratic equation in S can be written as (x, y, z, t)tA(x, y, z, t) = 0 with A a symmetric 4 × 4 matrix.
Hence, for a slice S , we obtain two quadratic equations f = (a2 + bc)|S and g = (d2 + ef )|S in C

4 which are
expressed by symmetric matrices A and B , respectively. We say that S is generic if the discriminant of the polynomial
det(tA + B) is non-zero (see [3]).

Proposition 2.2. With the preceding notation, the surface singularity (X,0) := (N ∩ S,0) is a simple elliptic singu-
larity of type D̃5.

Proof. Let S̃ be the blowing up of S ∼= C
4 at 0. By taking the strict transform X̃ of X, we have

P
3 ⊂ S̃ → S

∪ ∪ ∪
E ⊂ X̃ → X,

where E is the exceptional curve. Since X is defined by two quadratic equations in S, the exceptional curve E will
be defined by two generic quadratic equations in P

3. Hence E is an elliptic curve and E2 = −4. Therefore (X,0) is a
simple elliptic singularity of type D̃5 (see [5]). �
3. Semi-universal deformations

It is well known that (X,0) has a semi-universal deformation space, the base space is non-singular of dimension
dimT 1 and, dimT 2 = 0 [8].

Proposition 3.1. For each D̃5-singularity, dimT 1 = 7.

Proof. Any singularities of type D̃5 are given by the equations f = x2
1 + x2

2 +λx3x4 = 0 and g = x1x2 + x2
3 + x2

4 = 0
in C

4 with some λ ∈ C \ {0,±4}. Then an easy calculation gives dimT 1 = 7. �
To construct semi-universal deformations of D̃5-singularity, we will first restrict ourselves to the special case where

S0 := {c = d + e, f = a + b} ⊂ g and denote (X0,0) := (N ∩ S0,0). Consider a Cartan subalgebra h of g defined as

h :=
{(

a 0
0 −a

)}
⊕

{(
d 0
0 −d

)}
.

The adjoint quotient g → h/W can be regarded as

χ : g → h/W ∼= C
2,((

a b

c −a

)
,

(
d e

f −d

))
	→ (−a2 − bc,−d2 − ef

)
,

where W is the Weyl group of g which is isomorphic to Z/2Z ⊕ Z/2Z. Let us deform the adjoint quotient χ by
(α,β) ∈ C

2 as

f(α,β) : g → h/W ∼= C
2,((

a b

c −a

)
,

(
d e

f −d

))
	→ (−a2 − bc − αe,−d2 − ef − βb

)
.
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When (α,β) = (0,0), we have f(0,0) = χ . And, let us deform the slice S0 by (γ, δ, ε) ∈ C
3 as

S(γ,δ,ε) := {c = d + e + γ,f = a + b + δe + ε}.
For (γ, δ, ε) = (0,0,0), we have S(0,0,0) = S0.

Theorem 3.2. With the preceding notation, consider

S := C
2 × C

3 × h/W = {
(α,β) ∈ C

2} × {
(γ, δ, ε) ∈ C

3} × {
(λ,μ) ∈ h/W

}
.

Let X be the family of surfaces on S defined as

X := {
(X,α,β, γ, δ, ε, λ,μ) ∈ g × S | f(α,β)(X) = (λ,μ),X ∈ S(γ,δ,ε)

}
.

Set o := (0,0,0,0,0,0,0) ∈ S and q := (O,o) ∈ X . Then the morphism of germs (X , q) → (S, o) gives a semi-
universal deformation of (X0,0).

Proof. The coordinate ring OX0 of (X0,0) is isomorphic to C{a, b, d, e}/(g1, g2), where g1 = a2 + bd + be and
g2 = d2 + ae + be. The C-vector space T 1 = O2

X0
/M , where M is the OX0 -submodule of O2

X0
generated by the 4

vectors: (
∂g1
∂a

,
∂g2
∂a

), (
∂g1
∂b

,
∂g2
∂b

), (
∂g1
∂d

,
∂g2
∂d

) and (
∂g1
∂e

,
∂g2
∂e

).
Since f(α,β)(X) = (−a2 − bc − αe,−d2 − ef − βb) and c = d + e + γ,f = a + b + δe + ε for X ∈ S(γ,δ,ε), the

family X is defined by

f1 := a2 + bd + be + γ b + αe + λ = 0

f2 := d2 + ae + be + δe2 + εe + βb + μ = 0.

Note that we have

(f1, f2) = (g1, g2) + α(e,0) + β(0, b) + γ (b,0) + δ(0, e2) + ε(0, e) + λ(1,0) + μ(0,1)

and the 7 vectors appeared over (e,0), (0, b), (b,0), (0, e2), (0, e), (1,0), and (0,1) form a basis for T 1. Hence
the family (X , q) → (S, o) induces an isomorphism from S to T 1. Therefore (X , q) → (S, o) is isomorphic to a
semi-universal deformation of (X0,0). �

Now we want to construct semi-universal deformation spaces for a general transversal slice. For this, consider
the space Aff(g,4) of all 4-dimensional affine subspaces of g. Since any 4-dimensional affine subspace of g can be
described by two linear equations, Aff(g,4) is embedded in the Grassmann variety Grass(dimg+ 1,2) = Grass(7,2).
The space of all 4-dimensional linear subspaces Grass(g,4) of g is a closed subvariety of Aff(g,4).

By Proposition 2.2, (N ∩ S,0) gives us a D̃5-singularity for a general S in Grass(g,4). Then we obtain:

Theorem 3.3. Let S be a general element of Grass(g,4). Let S∗ be a ‘general’ 3-dimensional subvariety passing
through S of Aff(g,4). Set

S := C
2 × S∗ × h/W = {

(α,β) ∈ C
2} × { T ∈ S∗} × {

(λ,μ) ∈ h/W ∼= C
2}

and

X := {
(X,α,β,T , λ,μ) ∈ g × S | f(α,β)(X) = (λ,μ),X ∈ T

}
.

Then the morphism of germs (X , q) → (S, o) gives us a semi-universal deformation of (N ∩ S,0), where o =
(0,0,S,0,0) and q = (0, o).

Proof. The condition that 7 vectors are linearly independent in T 1 = O2
N∩S/M is open for S ∈ Grass(g,4). Hence

the condition that a given family becomes a semi-universal deformation is also open. Then we can choose a suitable
3-dimensional subvariety of Aff(g,4), which implies the meaning of the word ‘general’. �



34 K. Nakamoto, M. Tosun / C. R. Acad. Sci. Paris, Ser. I 345 (2007) 31–34
References

[1] E. Brieskorn, Singular elements of semisimple algebraic groups, Actes Congrès Int. Math. 2 (1970) 279–284.
[2] S. Helmke, P. Slodowy, Loop groups, elliptic singularities and principal bundles over elliptic curves, in: Geometry and Topology of Caustics,

CAUSTICS ’02, in: Banach Cent. Publ., vol. 62, 2004, pp. 87–99.
[3] K. Nakamoto, M. Tosun, Geometry of simple elliptic singularities via Lie algebras, in preparation.
[4] K. Saito, Quasihomogene isolierte Singularitaten von Hyperflachen, Invent. Math. 14 (1971) 123–142.
[5] K. Saito, Einfach-elliptische Singularitaten, Invent. Math. 23 (1974) 289–325.
[6] K. Saito, D. Yoshii, Extended affine root system. IV. Simply-laced elliptic Lie algebras, Publ. Res. Inst. Math. Sci. 36 (3) (2000) 385–421.
[7] P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lecture Notes Math., vol. 815, Springer, Berlin, 1980.
[8] G.N. Tjurina, Locally semiuniversal flat deformations of isolated singularities of complex spaces, Izv. Akad. Nauk SSSR, Ser. Mat. 33 (5)

(1970) 967–999.


