Algebraic Geometry

Semi-universal deformation spaces of some simple elliptic singularities

Kazunori Nakamoto ${ }^{\text {a }}$, Meral Tosun ${ }^{\text {b }}$
${ }^{\text {a }}$ Center for Life Science Research, University of Yamanashi, 1110 Shimokatou, Tamaho-cho, Nakakoma-gun, Yamanashi 409-3898, Japan
${ }^{\text {b }}$ Yildiz Technical University, Istanbul, Turkey and Feza Gursey Institute, Çengelköy, Istanbul, Turkey

Received 22 December 2006; accepted after revision 4 May 2007

Presented by Bernard Malgrange

Abstract

In this Note, we deal with the simple elliptic singularities of type \tilde{D}_{5}. By using the Lie algebra $s l(2, \mathbb{C}) \oplus s l(2, \mathbb{C})$, we construct semi-universal deformation spaces of these singularities. To cite this article: K. Nakamoto, M. Tosun, C. R. Acad. Sci. Paris, Ser. I 345 (2007). © 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Déformation semi-universelle des singularités elliptiques simples. Dans cette Note, nous traitons les singularités elliptiques simples du type \tilde{D}_{5}. En utilisant l'algèbre de $\operatorname{Lie} s l(2, \mathbb{C}) \oplus s l(2, \mathbb{C})$, nous construisons des espaces de déformation semi-universelle de ces singularités. Pour citer cet article : K. Nakamoto, M. Tosun, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Simple elliptic singularities of normal surfaces were defined by Saito in [5], and several special types were named as $\tilde{E}_{6}, \tilde{E}_{7}, \tilde{E}_{8}$ and \tilde{D}_{5}. Beyond Grothendieck-Brieskorn theory on the relation between simple singularities of surfaces and simple Lie algebras (see $[1,7]$), many mathematicians tried to discover some similar relations between simple elliptic singularities and Lie algebras or related objects ([4,6] and so on).

Here we construct the simple elliptic singularities of type \tilde{D}_{5} and their semi-universal deformation spaces by using $s l(2, \mathbb{C}) \oplus s l(2, \mathbb{C})$. This construction contrasts with the one of Helmke and Slodowy [2] who used a loop group, i.e. an infinite dimensional object.

2. Nilpotent variety and its singularities

Let \mathfrak{g} be a finite dimensional Lie algebra over \mathbb{C}. The nilpotent variety $\mathcal{N}(\mathfrak{g})$ of \mathfrak{g} is defined as $\mathcal{N}(\mathfrak{g}):=\{x \in \mathfrak{g} \mid$ $\operatorname{Ad}(x): \mathfrak{g} \rightarrow \mathfrak{g}$ is nilpotent $\}.$

[^0]In the case of $\mathfrak{g}=\operatorname{sl}(2, \mathbb{C}) \oplus \operatorname{sl}(2, \mathbb{C})$ the nilpotent variety $\mathcal{N}:=\mathcal{N}(\mathfrak{g})$ is

$$
\mathcal{N}=\left\{\left.\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right) \right\rvert\, a^{2}+b c=0\right\} \times\left\{\left.\left(\begin{array}{cc}
d & e \\
f & -d
\end{array}\right) \right\rvert\, d^{2}+e f=0\right\} .
$$

Let us consider a 4 -dimensional affine subspace \mathcal{S} of \mathfrak{g} passing through the origin $0=(O, O) \in \mathcal{N}$. We say that \mathcal{S} is a generic slice at 0 if the intersection $\mathcal{N} \cap \mathcal{S}$ is an isolated surface singularity at 0 . In the sequel, we assume that \mathcal{S} is a generic slice.

Remark 2.1. More precisely, we can define the genericity of slices in the following way: Let us fix an isomorphism $\mathcal{S} \cong \mathbb{C}^{4}$. A quadratic equation in S can be written as $(x, y, z, t)^{t} A(x, y, z, t)=0$ with A a symmetric 4×4 matrix. Hence, for a slice \mathcal{S}, we obtain two quadratic equations $f=\left.\left(a^{2}+b c\right)\right|_{\mathcal{S}}$ and $g=\left(d^{2}+e f\right) \mid \mathcal{S}$ in \mathbb{C}^{4} which are expressed by symmetric matrices A and B, respectively. We say that \mathcal{S} is generic if the discriminant of the polynomial $\operatorname{det}(t A+B)$ is non-zero (see [3]).

Proposition 2.2. With the preceding notation, the surface singularity $(X, 0):=(\mathcal{N} \cap \mathcal{S}, 0)$ is a simple elliptic singularity of type \tilde{D}_{5}.

Proof. Let $\tilde{\mathcal{S}}$ be the blowing up of $\mathcal{S} \cong \mathbb{C}^{4}$ at 0 . By taking the strict transform \tilde{X} of X, we have

$$
\begin{aligned}
& \mathbb{P}^{3} \subset \tilde{\mathcal{S}} \rightarrow \mathcal{S} \\
& \cup \cup \cup \\
& E \subset \tilde{X} \rightarrow X,
\end{aligned}
$$

where E is the exceptional curve. Since X is defined by two quadratic equations in S, the exceptional curve E will be defined by two generic quadratic equations in \mathbb{P}^{3}. Hence E is an elliptic curve and $E^{2}=-4$. Therefore $(X, 0)$ is a simple elliptic singularity of type \tilde{D}_{5} (see [5]).

3. Semi-universal deformations

It is well known that $(X, 0)$ has a semi-universal deformation space, the base space is non-singular of dimension $\operatorname{dim} T^{1}$ and, $\operatorname{dim} T^{2}=0[8]$.

Proposition 3.1. For each \tilde{D}_{5}-singularity, $\operatorname{dim} T^{1}=7$.
Proof. Any singularities of type \tilde{D}_{5} are given by the equations $f=x_{1}^{2}+x_{2}^{2}+\lambda x_{3} x_{4}=0$ and $g=x_{1} x_{2}+x_{3}^{2}+x_{4}^{2}=0$ in \mathbb{C}^{4} with some $\lambda \in \mathbb{C} \backslash\{0, \pm 4\}$. Then an easy calculation gives $\operatorname{dim} T^{1}=7$.

To construct semi-universal deformations of \tilde{D}_{5}-singularity, we will first restrict ourselves to the special case where $\mathcal{S}_{0}:=\{c=d+e, f=a+b\} \subset \mathfrak{g}$ and denote $\left(X_{0}, 0\right):=\left(\mathcal{N} \cap \mathcal{S}_{0}, 0\right)$. Consider a Cartan subalgebra \mathfrak{h} of \mathfrak{g} defined as

$$
\mathfrak{h}:=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & -a
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{cc}
d & 0 \\
0 & -d
\end{array}\right)\right\} .
$$

The adjoint quotient $\mathfrak{g} \rightarrow \mathfrak{h} / W$ can be regarded as

$$
\left.\chi: \begin{array}{cc}
\mathfrak{g} & \left.\left.\rightarrow \begin{array}{cc}
a & b \\
c & -a
\end{array}\right),\left(\begin{array}{cc}
d & e \\
f & -d
\end{array}\right)\right)
\end{array}\right) \mapsto\left(-a^{2}-b c,-d^{2}-e f\right),
$$

where W is the Weyl group of \mathfrak{g} which is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. Let us deform the adjoint quotient χ by $(\alpha, \beta) \in \mathbb{C}^{2}$ as

$$
\begin{aligned}
& f_{(\alpha, \beta)}: \\
&\left(\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right),\left(\begin{array}{cc}
d & e \\
f & -d
\end{array}\right)\right) \rightarrow
\end{aligned} \begin{aligned}
& \mathfrak{h} / W \cong \mathbb{C}^{2}, \\
&
\end{aligned}\left(-a^{2}-b c-\alpha e,-d^{2}-e f-\beta b\right) .
$$

When $(\alpha, \beta)=(0,0)$, we have $f_{(0,0)}=\chi$. And, let us deform the slice \mathcal{S}_{0} by $(\gamma, \delta, \varepsilon) \in \mathbb{C}^{3}$ as

$$
\mathcal{S}_{(\gamma, \delta, \varepsilon)}:=\{c=d+e+\gamma, f=a+b+\delta e+\varepsilon\}
$$

For $(\gamma, \delta, \varepsilon)=(0,0,0)$, we have $\mathcal{S}_{(0,0,0)}=\mathcal{S}_{0}$.
Theorem 3.2. With the preceding notation, consider

$$
S:=\mathbb{C}^{2} \times \mathbb{C}^{3} \times \mathfrak{h} / W=\left\{(\alpha, \beta) \in \mathbb{C}^{2}\right\} \times\left\{(\gamma, \delta, \varepsilon) \in \mathbb{C}^{3}\right\} \times\{(\lambda, \mu) \in \mathfrak{h} / W\}
$$

Let \mathcal{X} be the family of surfaces on S defined as

$$
\mathcal{X}:=\left\{(X, \alpha, \beta, \gamma, \delta, \epsilon, \lambda, \mu) \in \mathfrak{g} \times S \mid f_{(\alpha, \beta)}(X)=(\lambda, \mu), X \in \mathcal{S}_{(\gamma, \delta, \varepsilon)}\right\}
$$

Set $o:=(0,0,0,0,0,0,0) \in S$ and $q:=(O, o) \in \mathcal{X}$. Then the morphism of germs $(\mathcal{X}, q) \rightarrow(S, o)$ gives a semiuniversal deformation of $\left(X_{0}, 0\right)$.

Proof. The coordinate ring $\mathcal{O}_{X_{0}}$ of $\left(X_{0}, 0\right)$ is isomorphic to $\mathbb{C}\{a, b, d, e\} /\left(g_{1}, g_{2}\right)$, where $g_{1}=a^{2}+b d+b e$ and $g_{2}=d^{2}+a e+b e$. The \mathbb{C}-vector space $T^{1}=\mathcal{O}_{X_{0}}^{2} / M$, where M is the $\mathcal{O}_{X_{0}}$-submodule of $\mathcal{O}_{X_{0}}^{2}$ generated by the 4 vectors: $\left(\frac{\partial g_{1}}{\partial a}, \frac{\partial g_{2}}{\partial a}\right),\left(\frac{\partial g_{1}}{\partial b}, \frac{\partial g_{2}}{\partial b}\right),\left(\frac{\partial g_{1}}{\partial d}, \frac{\partial g_{2}}{\partial d}\right)$ and $\left(\frac{\partial g_{1}}{\partial e}, \frac{\partial g_{2}}{\partial e}\right)$.

Since $f_{(\alpha, \beta)}(X)=\left(-a^{2}-b c-\alpha e,-d^{2}-e f-\beta b\right)$ and $c=d+e+\gamma, f=a+b+\delta e+\varepsilon$ for $X \in \mathcal{S}_{(\gamma, \delta, \varepsilon)}$, the family \mathcal{X} is defined by

$$
\begin{aligned}
& f_{1}:=a^{2}+b d+b e+\gamma b+\alpha e+\lambda=0 \\
& f_{2}:=d^{2}+a e+b e+\delta e^{2}+\varepsilon e+\beta b+\mu=0
\end{aligned}
$$

Note that we have

$$
\left(f_{1}, f_{2}\right)=\left(g_{1}, g_{2}\right)+\alpha(e, 0)+\beta(0, b)+\gamma(b, 0)+\delta\left(0, e^{2}\right)+\varepsilon(0, e)+\lambda(1,0)+\mu(0,1)
$$

and the 7 vectors appeared over $(e, 0),(0, b),(b, 0),\left(0, e^{2}\right),(0, e),(1,0)$, and $(0,1)$ form a basis for T^{1}. Hence the family $(\mathcal{X}, q) \rightarrow(S, o)$ induces an isomorphism from S to T^{1}. Therefore $(\mathcal{X}, q) \rightarrow(S, o)$ is isomorphic to a semi-universal deformation of $\left(X_{0}, 0\right)$.

Now we want to construct semi-universal deformation spaces for a general transversal slice. For this, consider the space $\operatorname{Aff}(\mathfrak{g}, 4)$ of all 4-dimensional affine subspaces of \mathfrak{g}. Since any 4-dimensional affine subspace of \mathfrak{g} can be described by two linear equations, $\operatorname{Aff}(\mathfrak{g}, 4)$ is embedded in the Grassmann variety Grass $(\operatorname{dim} \mathfrak{g}+1,2)=\operatorname{Grass}(7,2)$. The space of all 4-dimensional linear subspaces $\operatorname{Grass}(\mathfrak{g}, 4)$ of \mathfrak{g} is a closed subvariety of $\operatorname{Aff}(\mathfrak{g}, 4)$.

By Proposition 2.2, ($\mathcal{N} \cap \mathcal{S}, 0)$ gives us a \tilde{D}_{5}-singularity for a general \mathcal{S} in Grass $(\mathfrak{g}, 4)$. Then we obtain:
Theorem 3.3. Let \mathcal{S} be a general element of $\operatorname{Grass}(\mathfrak{g}, 4)$. Let \mathcal{S}_{*} be a 'general' 3-dimensional subvariety passing through \mathcal{S} of $\operatorname{Aff}(\mathfrak{g}, 4)$. Set

$$
S:=\mathbb{C}^{2} \times \mathcal{S}_{*} \times \mathfrak{h} / W=\left\{(\alpha, \beta) \in \mathbb{C}^{2}\right\} \times\left\{\mathcal{T} \in \mathcal{S}_{*}\right\} \times\left\{(\lambda, \mu) \in \mathfrak{h} / W \cong \mathbb{C}^{2}\right\}
$$

and

$$
\mathcal{X}:=\left\{(X, \alpha, \beta, \mathcal{T}, \lambda, \mu) \in \mathfrak{g} \times S \mid f_{(\alpha, \beta)}(X)=(\lambda, \mu), X \in \mathcal{T}\right\}
$$

Then the morphism of germs $(\mathcal{X}, q) \rightarrow(S, o)$ gives us a semi-universal deformation of $(\mathcal{N} \cap \mathcal{S}, 0)$, where $o=$ $(0,0, \mathcal{S}, 0,0)$ and $q=(0, o)$.

Proof. The condition that 7 vectors are linearly independent in $T^{1}=\mathcal{O}_{\mathcal{N} \cap \mathcal{S}}^{2} / M$ is open for $\mathcal{S} \in \operatorname{Grass}(\mathfrak{g}, 4)$. Hence the condition that a given family becomes a semi-universal deformation is also open. Then we can choose a suitable 3-dimensional subvariety of $\operatorname{Aff}(\mathfrak{g}, 4)$, which implies the meaning of the word 'general'.

References

[1] E. Brieskorn, Singular elements of semisimple algebraic groups, Actes Congrès Int. Math. 2 (1970) 279-284.
[2] S. Helmke, P. Slodowy, Loop groups, elliptic singularities and principal bundles over elliptic curves, in: Geometry and Topology of Caustics, CAUSTICS '02, in: Banach Cent. Publ., vol. 62, 2004, pp. 87-99.
[3] K. Nakamoto, M. Tosun, Geometry of simple elliptic singularities via Lie algebras, in preparation.
[4] K. Saito, Quasihomogene isolierte Singularitaten von Hyperflachen, Invent. Math. 14 (1971) 123-142.
[5] K. Saito, Einfach-elliptische Singularitaten, Invent. Math. 23 (1974) 289-325.
[6] K. Saito, D. Yoshii, Extended affine root system. IV. Simply-laced elliptic Lie algebras, Publ. Res. Inst. Math. Sci. 36 (3) (2000) $385-421$.
[7] P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lecture Notes Math., vol. 815, Springer, Berlin, 1980.
[8] G.N. Tjurina, Locally semiuniversal flat deformations of isolated singularities of complex spaces, Izv. Akad. Nauk SSSR, Ser. Mat. 33 (5) (1970) 967-999.

[^0]: E-mail addresses: nakamoto@yamanashi.ac.jp (K. Nakamoto), tosun@gursey.gov.fr (M. Tosun).
 1631-073X/\$ - see front matter © 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.
 doi:10.1016/j.crma.2007.05.018

