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Abstract

In this Note, we study the corner instabilities in a slender cylinder constituted by a nonlinearly elastic material. Starting from the
three-dimensional nonlinear field equations, we derive, through a novel method, a singular dynamical system as the normal form
equation. It is shown that this system can capture the corner instabilities. We are also able to obtain analytical expressions of the
solutions. The mechanism that causes corner formations is also found. To cite this article: H.-H. Dai, F.-F. Wang, C. R. Acad. Sci.
Paris, Ser. I 345 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Instabilités en coin dans un cylindre mince non linéairement élastique : solutions analytiques mécanisme déformation.
Dans cette Note, on étudie les instabilités « en coin » dans un cylindre mince formé d’un matériau non linéairement élastique.
Partant des équations nonlinéaires tri-dimensionnelle, nous obtenons par une méthode nouvelle un système dynamique singulier.
On montre que ce système retient les instabilités en coin. Nous obtenons également les expressions analytiques des solutions. On
met aussi en évidence le fait que l’effet de couplage entre la nonlinéarité du matériau et la longueur caractéristique est le mécanisme
qui provoque l’apparition de coins. Pour citer cet article : H.-H. Dai, F.-F. Wang, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Stabilities and instabilities are important topics in nonlinearly elastic structures; see Antman [1]. There are few
works on the bifurcations of the nonlinear field equations. One exception is the work by Healey and Montes-
Pizarro [9], who utilized the generalized degree designed by Healey and Simpson [10] to give rigorous global
bifurcation results for the compression of a three-dimensional nonlinearly elastic cylinder. In this note, we shall study
the corner instabilities in a slender elastic cylinder based on the three-dimensional field equations. Here, a ‘corner’
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means that the first-order derivative is discontinuous at one point. We shall use a novel method involving compound
series-asymptotic expansions to carry out the analysis.

The present work is partially motivated by the Willis instability phenomenon occurring in a thick-walled elastic
tube; see Beatty [2]. In that phenomenon, there is a corner formation in the interior surface of the tube. Actually,
corner formations are widespread. Here, we intend to find the physical mechanism that causes the corner formations
and provide analytical solutions. It will be shown that, mathematically, an appropriate singular dynamical system can
be used to capture the corner solutions.

2. Normal formal equation of the nonlinear field equations

Let a and l denote the radius of the circular cylinder and its length. We use a cylindrical polar coordinate system
and we denote by (R,Θ,Z) and (r, θ, z) the coordinates of a material point in the reference and current configurations
respectively. The radial and axial displacements are denoted by U(R,Z) and W(R,Z). We consider a compressible
isotropic hyperelastic Murnaghan material whose strain energy function Φ can be found in, e.g., [3]. The nominal
stress tensor S = ∂Φ

∂F (where F denotes the deformation gradient) satisfies the following field equations:

(SrR)R + (SrZ)Z + SrR − SθΘ

R
= 0, (SzR)R + (SzZ)Z + SzR

R
= 0. (1)

We assume that the lateral surface of the cylinder is traction-free, i.e., SrR|R=a = 0 and SzR|R=a = 0.
Mathematically, to study the corner instabilities consists in studying the bifurcations of the complicated coupled

nonlinear partial differential equations (1) and then showing that there are bifurcations leading to non-smooth solutions
under the traction-free surface conditions with proper end conditions. However there is no available method for these
tasks. Here, a novel approach involving compound series and asymptotic expansions is used to derive their normal
form equation (cf. Dai and Huo [8], Dai and Fan [6] and Dai and Cai [5]). The computations are exceedingly delicate
and are carried out by MATHEMATICA. Here we only give the main steps.

First we introduce a new set of dimensionless quantities through the following suitable scalings:

W = hw, U = hu, R = lr̄, Z = lx, ε = h

l
, δ = a2

l2
, (2)

where h is a characteristic axial displacement, and ε and δ are considered as small parameters. Further more we
introduce a very important change of variables: w = w(x, s), u = rv(x, s), s = r2 and x = x. The next step is to take
series expansions of w and v in the neighborhood of s = 0:

w(s, x; ε, δ) = w0 + sw1 + s2w2 + · · · , v(s, x; ε, δ) = v0 + sv1 + s2v2 + · · · . (3)

Substituting (3) into the field equations, we can obtain two equations which contain terms with s0, s1, . . . . Letting
the coefficients of s0, s1,. . . vanish and combing with the boundary conditions, we obtain five equations with five
unknowns w0,w1,w2, v0 and v1. By using asymptotic expansions in ε, the unknowns v0, v1, w1 and w2 can be
expressed in terms of w0x . In this fashion we obtain a governing equation for εw0x :

V + D1V
2 − a2

(
1

4
VZZ + D2V

2
Z + 2D2V VZZ

)
= γ, (4)

where V = εw0x and D1 and D2 are constants related to constitutive constants and γ is the dimensionless averaged
end stress. Eq. (4) is called the normal form equation of the system with a given γ , since it contains all the required
terms to yield the leading-order behavior of the original system.

3. Solutions

We can rewrite (4) as a first-order system, viz.,

VZ = y, yZ = V + D1V
2 − a2D2y

2 − γ

a2( 1
4 + 2D2V )

. (5)

This is a singular dynamical system since there is a vertical singular line V = − 1 in the phase plane.
8D2
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Fig. 1. Phase planes for different γ values: (a) γp < γ < 0; (b) γ = γp ; (c) γc � γ < γp .

In the following, we study two boundary-value problems of this system under ‘sliding’(or natural) boundary con-
ditions and clamped boundary conditions. Although governing traveling waves for such systems have been studied in
the past (see Dai [4] and Dai and Huo [7]), it appears that the boundary-value problem of a singular dynamical system
was never formulated nor studied before. Therefore we have a new mathematical problem at hand.

Here we only consider the case 4D2 > D1 > 0 since the other cases can be similarly considered. As γ increases,
there are several different phase planes, which are shown in Fig. 1.
Case I. Natural Boundary Conditions

In this case, VZ = 0 at Z = 0 and l. Without loss of generality, we let l = 1. In the phase plane for case(a) or (b),
there are two trivial solutions, and the trivial solution with a smaller strain value has the smaller energy value, which
is the stable configuration. In the phase plane of case (c), in addition to two trivial solutions, there exist nontrivial
solutions, for which we have the following theorem:

Theorem 3.1. In the phase plane (c), there are two types of nontrivial solutions (one being periodic and one being
non-smooth), for which the following results hold.

(1) There exists a periodic solution if and only if there exists a positive integer n such that

n = β

√
(− 1

8D2
− E2)(E3 − E1)

2(− 1
8D2

− E3)

1

Π(π
2 ,

E3−E2−1/8D2−E2
, q)

, (6)

where

β = 1

a

√
D1

3D2
, q =

√√√√ (E2 − E3)(E1 + 1
8D2

)

(E1 − E3)(E2 + 1
8D2

)
, (7)

where Π is the elliptic integral of the third kind and Ei (i = 2,3) are the points where the trajectory crosses the
V -axis, and E1 can be expressed in terms of E2, D1, D2 and γ .

(2) The non-smooth (corner) solution occurs at the critical stress value

γc = (D2
1 − 8D1D2 − 48D2

2)(1 + e2β) + (14D2
1 − 112D1D2 + 96D2

2)eβ

256D1D
2
2(1 + eβ)2

, (8)

and its explicit solution is given by

V = E2 + (E2 − E1) sinh2
(

arcsinh

√
− 1

8D2
− E2

−E1 + E2
− 1

2
β

∣∣∣∣Z − 1

2

∣∣∣∣
)

, 0 � Z � 1, (9)

where E1 and E2 can be expressed in terms of γ , D1, D2 and a.

In the phase plane (c), when γ = γc , there is also a corner solution in addition to two trivial solutions and periodic
solutions. It starts from A, goes to B , then jumps from B to C and finally goes back to A. If D1, D2 and the Poisson
ratio ν are properly chosen, this corner solution has the smallest total potential energy value and thus it represents a
stable configuration.
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Case II. Clamped Boundary Conditions
In this case the radial displacements at the points (0, a) and (1, a) vanish. After some calculations, it is found that

this condition is equivalent to V = α at Z = 0 and 1, where α is a negative constant.
For the cases γp < γ < 0, γ = γp and γc < γ < γp , there is a unique solution indexed by 1 in the corresponding

phase plane. At a critical stress value γ = γc, in addition to the solution 1, there is also a corner solution. It starts
from D, goes to C, then jumps from C to B and finally arrives at E. We then have the following theorem:

Theorem 3.2. Trajectory 1 is a solution if and only if there exists a value V0 such that

1

2
= 1

β

α∫
V0

√
τ + 1

8D2

(τ − V0)(τ 2 + sτ + t)
dτ, where s = 3 + 2D1V0

2D1
and t = −6γ + 3V0 + 2D1V

2
0

2D1
. (10)

There exists a corner solution in the phase plane (c) if and only if there exists a critical value γ = γc such that

1

2
= 1

β

(
2 arcsinh

√
α − E2

−E1 + E2
− 2 arcsinh

√
− 1

8D2
− E2

−E1 + E2

)
, (11)

where E1 and E2 are two constants expressed in terms of γ , D1, D2 and a. Its solution is given by

V = E2 + (E2 − E1) sinh2
(

arcsinh

√
− 1

8D2
− E2

−E1 + E2
+ 1

2
β

∣∣∣∣1

2
− Z

∣∣∣∣
)

, 0 � Z � 1. (12)

If D1, D2 and the Poisson ratio ν are properly chosen, this corner solution exists and has the smaller total potential
energy value. It thus represents a stable configuration.

The difference between the two cases is that it is an inward corner in Case I and an outward corner in Case II. So,
the end conditions have a great influence on the bifurcations.

In conclusion, we find that mathematically a singular dynamical system can indeed capture the corner solutions.
The correspond singularity comes from the zero in the denominator of (5), which is due to the coupling effect of
the material nonlinearity and the geometrical size. Thus, our results reveal that the mechanism causing the corner
instabilities is the interaction between the material nonlinearity and the geometrical size.
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