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Abstract

In this Note we study C2 solutions of the equation −�u = eu on the entire Euclidean space R
N , with N � 2. We prove the

non-existence of stable solutions for N � 9. In the two-dimensional case we also demonstrate a classification theorem for solutions
which are stable outside a compact set. To cite this article: A. Farina, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Solutions stables de −�u = eu dans R
N . Cette Note porte sur l’étude des solutions de l’équation −�u = eu dans R

N , N � 2.
Nous démontrons la non-existence de solutions stables en dimension N � 9. En dimension N = 2, nous prouvons aussi un théorème
de classification pour les solutions stables à l’extérieur d’un compact. Pour citer cet article : A. Farina, C. R. Acad. Sci. Paris,
Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

In this Note we study solutions of the semilinear partial differential equation:

−�u = eu on R
N, N � 2. (1)

The above problem arises in the theory of gravitational equilibrium of polytropic stars (see for instance [4,10,14]
and the references therein). On the other hand, classification results for solutions defined on the entire Euclidean space
are crucial to obtain a priori L∞-bounds for solutions of semilinear boundary value problems in bounded domains
(see for instance [2,7,12,13]).

Our main concern is to classify stable solutions of (1), or more generally, solutions of (1) which are stable (only)
outside a compact set of R

N . We recall that, given a domain Ω ⊂ R
N (possibly unbounded), a solution u ∈ C2(Ω) of

−�u = eu is stable in Ω if:

∀ψ ∈ C1
c (Ω) Qu(ψ) :=

∫
Ω

|∇ψ |2 − euψ2 � 0.
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Inspired by the methods that we developed in our previous works [11,12] on the classification of solutions of the
Lane–Emden equation on unbounded domains of R

N , we are able to prove the following:

Theorem 1. For N � 9, there is no stable C2 solution of Eq. (1).

Some remarks are in order.

Remarks 2. (i) Theorem 1 is sharp. Indeed, for every N � 10 Eq. (1) admits a radial stable solution. This follows
from the analysis performed in [14], as was already remarked in [7].

(ii) The above theorem answers a question raised by H. Brezis [9].
(iii) For N = 2 and 3, and under the additional assumption that u is bounded above, the conclusion of the above

Theorem 1 was previously obtained by E.N. Dancer [6]. The proof in [6] uses a completely different approach based
on ideas originated with the work of L. Ambrosio and X. Cabré [1] in the study of a conjecture of E. De Giorgi [8].
We would like to point out that the assumption: u is bounded above, is crucial for this approach.

In [7], the author also proves that, for N = 3 Eq. (1) has no negative solution of finite Morse index. Here we
focus on the two-dimensional case and prove a complete classification result for solutions which are stable outside a
compact set of R

2 (clearly this family of solutions includes all the solutions with finite Morse index, see for instance
[6,11,12]). More precisely, we prove:

Theorem 3. Let u ∈ C2(R2) be a solution of (1) with N = 2. Then, u is stable outside a compact set of R
2 if and only

if it is of the form

u(x) = ln

[
32λ2

(4 + λ2|x − x0|2)2

]
, λ > 0, x0 ∈ R

2. (2)

Remark 4. The above Theorem 3 extends to distribution-solutions u ∈ L1
loc(R

2) such that eu ∈ L1
loc(R

2). Indeed,
the stability outside a compact set of R

2, together with the local integrability of u, easily imply that
∫

R2 eu < +∞.
Therefore, a result of H. Brezis and F. Merle [3] yields that u is bounded above on the entire Euclidean plane and
hence u is a classical solution of (1), by standard elliptic estimates. The result then follows by applying Theorem 3.

In view of the above results we are naturally led to the following:

Open Problem. Let N � 3. Classify all the solutions of (1) which are stable outside a compact set of R
N .

2. Proofs

Theorem 1 is a consequence of the following:

Proposition 5. Assume N � 2 and let Ω be a domain ( possibly unbounded) of R
N . Let u ∈ C2(Ω) be a stable

solution of

−�u = eu on Ω. (3)

Then, for any integer m � 5 and any α ∈ (0,2) we have∫
Ω

e(2α+1)uψ2m �
(

m

2 − α

)2α+1 ∫
Ω

(|∇ψ |2 + |ψ ||�ψ |)2α+1 (4)

for all test functions ψ ∈ C2
c (Ω) satisfying 0 � ψ � 1 in Ω .

Proof. We split the proof into three steps.
Step 1. For any ϕ ∈ C2

c (Ω) we have∫ ∣∣∇(
eαu

)∣∣2
ϕ2 = α

2

∫
e(2α+1)uϕ2 + 1

4

∫
e2αu�

(
ϕ2). (5)
Ω Ω Ω



A. Farina / C. R. Acad. Sci. Paris, Ser. I 345 (2007) 63–66 65
Multiply Eq. (3) by e2αuϕ2 and integrate by parts to find∫
Ω

∇u∇(
e2αu

)
ϕ2 +

∫
Ω

e2αu∇u∇(
ϕ2) =

∫
Ω

e(2α+1)uϕ2,

and therefore∫
Ω

e(2α+1)uϕ2 = 2

α

∫
Ω

∣∣∇(
eαu

)∣∣2
ϕ2 + 1

2α

∫
Ω

∇(
e2αu

)∇(
ϕ2) = 2

α

∫
Ω

∣∣∇(
eαu

)∣∣2
ϕ2 − 1

2α

∫
Ω

e2αu�
(
ϕ2).

The latter immediately implies identity (5).
Step 2. For any ϕ ∈ C2

c (Ω) we have
∫
Ω

e(2α+1)uϕ2 � 2

2 − α

∫
Ω

e2αu

[∣∣∇ϕ
∣∣2 − �(ϕ2)

4

]
. (6)

Inserting the function ψ = eαuϕ in the quadratic form Qu we get∫
Ω

e(2α+1)uϕ2 �
∫
Ω

∣∣∇(
eαu

)∣∣2
ϕ2 +

∫
Ω

e2αu|∇ϕ|2 + 1

2

∫
Ω

∇(
e2αu

)∇(
ϕ2)

=
∫
Ω

∣∣∇(
eαu

)∣∣2
ϕ2 +

∫
Ω

e2αu|∇ϕ|2 − 1

2

∫
Ω

e2αu�
(
ϕ2). (7)

Using (5) in the latter inequality we obtain∫
Ω

e(2α+1)uϕ2 � α

2

∫
Ω

e(2α+1)uϕ2 + 1

4

∫
Ω

e2αu�(ϕ2) +
∫
Ω

e2αu|∇ϕ|2 − 1

2

∫
Ω

e2αu�
(
ϕ2),

which gives the desired conclusion.
Step 3. End of the proof. For any ψ ∈ C2

c (Ω) satisfying 0 � ψ � 1 in Ω we set ϕ = ψm. Inserting ϕ in (6) we
obtain∫

Ω

e(2α+1)uψ2m � m

2 − α

∫
Ω

e2αuψ2(m−1)
[|∇ψ |2 − ψ�ψ

]

and an application of Hölder’s inequality leads to

∫
Ω

e(2α+1)uψ2m � m

2 − α

(∫
Ω

[
e2αuψ2(m−1)

] 2α+1
2α

) 2α
2α+1

(∫
Ω

[∣∣∇ψ |2 + |ψ ||�ψ |]2α+1
) 1

2α+1

.

Now, we observe that m � 5 implies (m − 1)
(2α+1)

α
� 2m and thus ψ(m−1)

(2α+1)
α � ψ2m in Ω , since 0 � ψ � 1

everywhere in Ω . Therefore,

∫
Ω

e(2α+1)uψ2m � m

2 − α

(∫
Ω

e(2α+1)uψ2m

) 2α
2α+1

(∫
Ω

[|∇ψ |2 + |ψ ||�ψ |]2α+1
) 1

2α+1

,

which proves the claim. �
Proof of Theorem 1. Suppose to the contrary that Eq. (1) admits a stable solution for N � 9. Fix an integer m � 5
and choose α ∈ (0,2) such that N − 2(2α + 1) < 0 (notice that this is always possible since N � 9). For every R > 0
and every x ∈ R

N, consider the function φR(x) = φ(
|x|
R

), where φ ∈ C2
c (R) satisfies 0 � φ � 1 everywhere on R and

φ(t) =
{

1 if |t | � 1,

0 if |t | � 2.
(8)
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Now we apply Proposition 5 with Ω = R
N and ψ = φR to get

∀R > 0
∫

|x|<R

e(2α+1)u � CRN−2(2α+1)

where C is a positive constant independent on R. Letting R → +∞ in the latter inequality we obtain
∫

RN e(2α+1)u = 0,

a contradiction. This concludes the proof. �
Proof of Theorem 3. Since u is stable outside a compact set of R

2 there is R0 > 0 such that Proposition 5 holds true
with Ω = R

2 \B(0,R), where B(0,R0) denotes the ball centered at the origin and of radius R0. For every R > R0 +3
and every x ∈ R

2, consider the function ψR ∈ C2
c (R2 \ B(0,R0)) satisfying

ψR(x) =
{

ξ if |x| � R0 + 3,

φR if |x| � R0 + 3,
(9)

where φR was defined in the proof of Theorem 1 and ξ is any function belonging to C2(R2) and such that 0 � ξ � 1
on R

2, ξ = 0 in the ball centered at the origin and of radius R0 + 1 and ξ = 1 outside the ball centered at the origin
and of radius R0 + 2. Since Qu(ψR) � 0 we get

∫
R2 eu < +∞ and hence u must be of the form (2) by a well-known

result of W. Chen and C. Li [5]. Conversely, any function given by (2) is stable outside a large ball of R
2. Clearly, it

is enough to prove the claim for x0 = 0 and λ > 0. To this end, we observe that there exists R = R(λ) > 1 such that

eu(x) � 1
4|x|2 ln2(|x|) for |x| > R, and that, ∀ψ ∈ C1

c (R2 \ B(0,R)) we have
∫
|x|>R

|∇ψ |2 − ψ2

4|x|2 ln2(|x|) � 0 (the latter

follows immediately from the fact that ln
1
2 (|x|) is a positive solution of −�u = 1

4|x|2 ln2(|x|)u outside the closed unit

ball of R
2). Combining these two properties we obtain the desired conclusion. �
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