Partial Differential Equations

Stable solutions of $-\Delta u=\mathrm{e}^{u}$ on \mathbb{R}^{N}

Alberto Farina
LAMFA, CNRS UMR 6140, université de Picardie Jules-Verne, faculté de mathématiques et d'informatique, 33, rue Saint-Leu, 80039 Amiens, France
Received and accepted 7 May 2007
Available online 3 July 2007
Presented by Haïm Brezis

Abstract

In this Note we study C^{2} solutions of the equation $-\Delta u=\mathrm{e}^{u}$ on the entire Euclidean space \mathbb{R}^{N}, with $N \geqslant 2$. We prove the non-existence of stable solutions for $N \leqslant 9$. In the two-dimensional case we also demonstrate a classification theorem for solutions which are stable outside a compact set. To cite this article: A. Farina, C. R. Acad. Sci. Paris, Ser. I 345 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Solutions stables de $-\Delta u=\mathrm{e}^{u}$ dans \mathbb{R}^{N}. Cette Note porte sur l'étude des solutions de l'équation $-\Delta u=\mathrm{e}^{u}$ dans $\mathbb{R}^{N}, N \geqslant 2$. Nous démontrons la non-existence de solutions stables en dimension $N \leqslant 9$. En dimension $N=2$, nous prouvons aussi un théorème de classification pour les solutions stables à l'extérieur d'un compact. Pour citer cet article: A. Farina, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

In this Note we study solutions of the semilinear partial differential equation:

$$
\begin{equation*}
-\Delta u=\mathrm{e}^{u} \quad \text { on } \mathbb{R}^{N}, N \geqslant 2 \tag{1}
\end{equation*}
$$

The above problem arises in the theory of gravitational equilibrium of polytropic stars (see for instance $[4,10,14]$ and the references therein). On the other hand, classification results for solutions defined on the entire Euclidean space are crucial to obtain a priori L^{∞}-bounds for solutions of semilinear boundary value problems in bounded domains (see for instance [2,7,12,13]).

Our main concern is to classify stable solutions of (1), or more generally, solutions of (1) which are stable (only) outside a compact set of \mathbb{R}^{N}. We recall that, given a domain $\Omega \subset \mathbb{R}^{N}$ (possibly unbounded), a solution $u \in C^{2}(\Omega)$ of $-\Delta u=\mathrm{e}^{u}$ is stable in Ω if:

$$
\forall \psi \in C_{c}^{1}(\Omega) \quad Q_{u}(\psi):=\int_{\Omega}|\nabla \psi|^{2}-\mathrm{e}^{u} \psi^{2} \geqslant 0 .
$$

[^0]Inspired by the methods that we developed in our previous works [11,12] on the classification of solutions of the Lane-Emden equation on unbounded domains of \mathbb{R}^{N}, we are able to prove the following:

Theorem 1. For $N \leqslant 9$, there is no stable C^{2} solution of Eq. (1).
Some remarks are in order.
Remarks 2. (i) Theorem 1 is sharp. Indeed, for every $N \geqslant 10$ Eq. (1) admits a radial stable solution. This follows from the analysis performed in [14], as was already remarked in [7].
(ii) The above theorem answers a question raised by H. Brezis [9].
(iii) For $N=2$ and 3, and under the additional assumption that u is bounded above, the conclusion of the above Theorem 1 was previously obtained by E.N. Dancer [6]. The proof in [6] uses a completely different approach based on ideas originated with the work of L. Ambrosio and X. Cabré [1] in the study of a conjecture of E. De Giorgi [8]. We would like to point out that the assumption: u is bounded above, is crucial for this approach.

In [7], the author also proves that, for $N=3$ Eq. (1) has no negative solution of finite Morse index. Here we focus on the two-dimensional case and prove a complete classification result for solutions which are stable outside a compact set of \mathbb{R}^{2} (clearly this family of solutions includes all the solutions with finite Morse index, see for instance $[6,11,12])$. More precisely, we prove:

Theorem 3. Let $u \in C^{2}\left(\mathbb{R}^{2}\right)$ be a solution of (1) with $N=2$. Then, u is stable outside a compact set of \mathbb{R}^{2} if and only if it is of the form

$$
\begin{equation*}
u(x)=\ln \left[\frac{32 \lambda^{2}}{\left(4+\lambda^{2}\left|x-x_{0}\right|^{2}\right)^{2}}\right], \quad \lambda>0, x_{0} \in \mathbb{R}^{2} . \tag{2}
\end{equation*}
$$

Remark 4. The above Theorem 3 extends to distribution-solutions $u \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2}\right)$ such that $\mathrm{e}^{u} \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2}\right)$. Indeed, the stability outside a compact set of \mathbb{R}^{2}, together with the local integrability of u, easily imply that $\int_{\mathbb{R}^{2}} \mathrm{e}^{u}<+\infty$. Therefore, a result of H. Brezis and F. Merle [3] yields that u is bounded above on the entire Euclidean plane and hence u is a classical solution of (1), by standard elliptic estimates. The result then follows by applying Theorem 3 .

In view of the above results we are naturally led to the following:
Open Problem. Let $N \geqslant 3$. Classify all the solutions of (1) which are stable outside a compact set of \mathbb{R}^{N}.

2. Proofs

Theorem 1 is a consequence of the following:
Proposition 5. Assume $N \geqslant 2$ and let Ω be a domain (possibly unbounded) of \mathbb{R}^{N}. Let $u \in C^{2}(\Omega)$ be a stable solution of

$$
\begin{equation*}
-\Delta u=\mathrm{e}^{u} \quad \text { on } \Omega . \tag{3}
\end{equation*}
$$

Then, for any integer $m \geqslant 5$ and any $\alpha \in(0,2)$ we have

$$
\begin{equation*}
\int_{\Omega} \mathrm{e}^{(2 \alpha+1) u} \psi^{2 m} \leqslant\left(\frac{m}{2-\alpha}\right)^{2 \alpha+1} \int_{\Omega}\left(|\nabla \psi|^{2}+|\psi||\Delta \psi|\right)^{2 \alpha+1} \tag{4}
\end{equation*}
$$

for all test functions $\psi \in C_{c}^{2}(\Omega)$ satisfying $0 \leqslant \psi \leqslant 1$ in Ω.
Proof. We split the proof into three steps.
Step 1. For any $\varphi \in C_{c}^{2}(\Omega)$ we have

$$
\begin{equation*}
\int_{\Omega}\left|\nabla\left(\mathrm{e}^{\alpha u}\right)\right|^{2} \varphi^{2}=\frac{\alpha}{2} \int_{\Omega} \mathrm{e}^{(2 \alpha+1) u} \varphi^{2}+\frac{1}{4} \int_{\Omega} \mathrm{e}^{2 \alpha u} \Delta\left(\varphi^{2}\right) . \tag{5}
\end{equation*}
$$

Multiply Eq. (3) by $\mathrm{e}^{2 \alpha u} \varphi^{2}$ and integrate by parts to find

$$
\int_{\Omega} \nabla u \nabla\left(\mathrm{e}^{2 \alpha u}\right) \varphi^{2}+\int_{\Omega} \mathrm{e}^{2 \alpha u} \nabla u \nabla\left(\varphi^{2}\right)=\int_{\Omega} \mathrm{e}^{(2 \alpha+1) u} \varphi^{2},
$$

and therefore

$$
\int_{\Omega} \mathrm{e}^{(2 \alpha+1) u} \varphi^{2}=\frac{2}{\alpha} \int_{\Omega}\left|\nabla\left(\mathrm{e}^{\alpha u}\right)\right|^{2} \varphi^{2}+\frac{1}{2 \alpha} \int_{\Omega} \nabla\left(\mathrm{e}^{2 \alpha u}\right) \nabla\left(\varphi^{2}\right)=\frac{2}{\alpha} \int_{\Omega}\left|\nabla\left(\mathrm{e}^{\alpha u}\right)\right|^{2} \varphi^{2}-\frac{1}{2 \alpha} \int_{\Omega} \mathrm{e}^{2 \alpha u} \Delta\left(\varphi^{2}\right) .
$$

The latter immediately implies identity (5).
Step 2. For any $\varphi \in C_{c}^{2}(\Omega)$ we have

$$
\begin{equation*}
\int_{\Omega} \mathrm{e}^{(2 \alpha+1) u} \varphi^{2} \leqslant \frac{2}{2-\alpha} \int_{\Omega} \mathrm{e}^{2 \alpha u}\left[|\nabla \varphi|^{2}-\frac{\Delta\left(\varphi^{2}\right)}{4}\right] . \tag{6}
\end{equation*}
$$

Inserting the function $\psi=\mathrm{e}^{\alpha u} \varphi$ in the quadratic form Q_{u} we get

$$
\begin{align*}
\int_{\Omega} \mathrm{e}^{(2 \alpha+1) u} \varphi^{2} & \leqslant \int_{\Omega}\left|\nabla\left(\mathrm{e}^{\alpha u}\right)\right|^{2} \varphi^{2}+\int_{\Omega} \mathrm{e}^{2 \alpha u}|\nabla \varphi|^{2}+\frac{1}{2} \int_{\Omega} \nabla\left(\mathrm{e}^{2 \alpha u}\right) \nabla\left(\varphi^{2}\right) \\
& =\int_{\Omega}\left|\nabla\left(\mathrm{e}^{\alpha u}\right)\right|^{2} \varphi^{2}+\int_{\Omega} \mathrm{e}^{2 \alpha u}|\nabla \varphi|^{2}-\frac{1}{2} \int_{\Omega} \mathrm{e}^{2 \alpha u} \Delta\left(\varphi^{2}\right) . \tag{7}
\end{align*}
$$

Using (5) in the latter inequality we obtain

$$
\int_{\Omega} \mathrm{e}^{(2 \alpha+1) u} \varphi^{2} \leqslant \frac{\alpha}{2} \int_{\Omega} \mathrm{e}^{(2 \alpha+1) u} \varphi^{2}+\frac{1}{4} \int_{\Omega} \mathrm{e}^{2 \alpha u} \Delta\left(\varphi^{2}\right)+\int_{\Omega} \mathrm{e}^{2 \alpha u}|\nabla \varphi|^{2}-\frac{1}{2} \int_{\Omega} \mathrm{e}^{2 \alpha u} \Delta\left(\varphi^{2}\right),
$$

which gives the desired conclusion.
Step 3. End of the proof. For any $\psi \in C_{c}^{2}(\Omega)$ satisfying $0 \leqslant \psi \leqslant 1$ in Ω we set $\varphi=\psi^{m}$. Inserting φ in (6) we obtain

$$
\int_{\Omega} \mathrm{e}^{(2 \alpha+1) u} \psi^{2 m} \leqslant \frac{m}{2-\alpha} \int_{\Omega} \mathrm{e}^{2 \alpha u} \psi^{2(m-1)}\left[|\nabla \psi|^{2}-\psi \Delta \psi\right]
$$

and an application of Hölder's inequality leads to

$$
\int_{\Omega} \mathrm{e}^{(2 \alpha+1) u} \psi^{2 m} \leqslant \frac{m}{2-\alpha}\left(\int_{\Omega}\left[\mathrm{e}^{2 \alpha u} \psi^{2(m-1)}\right]^{\frac{2 \alpha+1}{2 \alpha}}\right)^{\frac{2 \alpha}{2 \alpha+1}}\left(\int_{\Omega}\left[|\nabla \psi|^{2}+|\psi||\Delta \psi|\right]^{2 \alpha+1}\right)^{\frac{1}{2 \alpha+1}}
$$

Now, we observe that $m \geqslant 5$ implies $(m-1) \frac{(2 \alpha+1)}{\alpha} \geqslant 2 m$ and thus $\psi^{(m-1) \frac{(2 \alpha+1)}{\alpha}} \leqslant \psi^{2 m}$ in Ω, since $0 \leqslant \psi \leqslant 1$ everywhere in Ω. Therefore,

$$
\int_{\Omega} \mathrm{e}^{(2 \alpha+1) u} \psi^{2 m} \leqslant \frac{m}{2-\alpha}\left(\int_{\Omega} \mathrm{e}^{(2 \alpha+1) u} \psi^{2 m}\right)^{\frac{2 \alpha}{2 \alpha+1}}\left(\int_{\Omega}\left[|\nabla \psi|^{2}+|\psi||\Delta \psi|\right]^{2 \alpha+1}\right)^{\frac{1}{2 \alpha+1}},
$$

which proves the claim.
Proof of Theorem 1. Suppose to the contrary that Eq. (1) admits a stable solution for $N \leqslant 9$. Fix an integer $m \geqslant 5$ and choose $\alpha \in(0,2)$ such that $N-2(2 \alpha+1)<0$ (notice that this is always possible since $N \leqslant 9$). For every $R>0$ and every $x \in \mathbb{R}^{N}$, consider the function $\phi_{R}(x)=\phi\left(\frac{|x|}{R}\right)$, where $\phi \in C_{c}^{2}(\mathbb{R})$ satisfies $0 \leqslant \phi \leqslant 1$ everywhere on \mathbb{R} and

$$
\phi(t)= \begin{cases}1 & \text { if }|t| \leqslant 1, \tag{8}\\ 0 & \text { if }|t| \geqslant 2 .\end{cases}
$$

Now we apply Proposition 5 with $\Omega=\mathbb{R}^{N}$ and $\psi=\phi_{R}$ to get

$$
\forall R>0 \quad \int_{|x|<R} \mathrm{e}^{(2 \alpha+1) u} \leqslant C R^{N-2(2 \alpha+1)}
$$

where C is a positive constant independent on R. Letting $R \rightarrow+\infty$ in the latter inequality we obtain $\int_{\mathbb{R}^{N}} \mathrm{e}^{(2 \alpha+1) u}=0$, a contradiction. This concludes the proof.

Proof of Theorem 3. Since u is stable outside a compact set of \mathbb{R}^{2} there is $R_{0}>0$ such that Proposition 5 holds true with $\Omega=\mathbb{R}^{2} \backslash \overline{B(0, R)}$, where $B\left(0, R_{0}\right)$ denotes the ball centered at the origin and of radius R_{0}. For every $R>R_{0}+3$ and every $x \in \mathbb{R}^{2}$, consider the function $\psi_{R} \in C_{c}^{2}\left(\mathbb{R}^{2} \backslash \overline{B\left(0, R_{0}\right)}\right)$ satisfying

$$
\psi_{R}(x)= \begin{cases}\xi & \text { if }|x| \leqslant R_{0}+3 \tag{9}\\ \phi_{R} & \text { if }|x| \geqslant R_{0}+3\end{cases}
$$

where ϕ_{R} was defined in the proof of Theorem 1 and ξ is any function belonging to $C^{2}\left(\mathbb{R}^{2}\right)$ and such that $0 \leqslant \xi \leqslant 1$ on $\mathbb{R}^{2}, \xi=0$ in the ball centered at the origin and of radius $R_{0}+1$ and $\xi=1$ outside the ball centered at the origin and of radius $R_{0}+2$. Since $Q_{u}\left(\psi_{R}\right) \geqslant 0$ we get $\int_{\mathbb{R}^{2}} \mathrm{e}^{u}<+\infty$ and hence u must be of the form (2) by a well-known result of W. Chen and C . Li [5]. Conversely, any function given by (2) is stable outside a large ball of \mathbb{R}^{2}. Clearly, it is enough to prove the claim for $x_{0}=0$ and $\lambda>0$. To this end, we observe that there exists $R=R(\lambda)>1$ such that $\mathrm{e}^{u(x)} \leqslant \frac{1}{4|x|^{2} \ln ^{2}(|x|)}$ for $|x|>R$, and that, $\forall \psi \in C_{c}^{1}\left(\mathbb{R}^{2} \backslash \overline{B(0, R)}\right)$ we have $\int_{|x|>R}|\nabla \psi|^{2}-\frac{\psi^{2}}{4|x|^{2} \ln ^{2}(|x|)} \geqslant 0$ (the latter follows immediately from the fact that $\ln ^{\frac{1}{2}}(|x|)$ is a positive solution of $-\Delta u=\frac{1}{4|x|^{2} \ln ^{2}(|x|)} u$ outside the closed unit ball of \mathbb{R}^{2}). Combining these two properties we obtain the desired conclusion.

Acknowledgements

The author is grateful to Louis Dupaigne for a careful reading of a first version of this work and for stimulating discussions.

References

[1] L. Ambrosio, X. Cabré, Entire solutions of semilinear elliptic equations in \mathbb{R}^{3} and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (4) (2000) 725-739.
[2] A. Bahri, P.-L. Lions, Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math. 45 (9) (1992) $1205-1215$.
[3] H. Brezis, F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x) \mathrm{e}^{u}$ in two dimensions, Comm. Partial Differential Equations 16 (1991) 1223-1253.
[4] S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover Publications, Inc., New York, 1957.
[5] W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991) 615-622.
[6] E.N. Dancer, Stable solutions on \mathbb{R}^{N} and the primary branch of some non-self-adjoint convex problems, Differential Integral Equations 17 (2004) 961-970.
[7] E.N. Dancer, Finite Morse index solutions of exponential problems, preprint.
[8] E. De Giorgi, Convergence problems for functionals and operators, in: Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis, Rome, 1978, Pitagora, Bologna, 1979, pp. 131-188.
[9] L. Dupaigne, Personal communication.
[10] V.R. Emden, Gaskugeln, Anwendungen der mechanischen Warmetheorie auf kosmologische und meteorologische Probleme, Teubner-Verlag, Leipzig, 1907.
[11] A. Farina, Liouville-type results for solutions of $-\Delta u=|u|^{p-1} u$ on unbounded domains of \mathbb{R}^{N}, C. R. Acad. Sci. Paris, Ser. I 341 (7) (2005) 415-418.
[12] A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of \mathbb{R}^{N}, J. Math. Pures Appl. 87 (5) (2007) 537-561.
[13] B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (8) (1981) 883-901.
[14] D.D. Joseph, T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1972/73) 241-269.

[^0]: E-mail address: alberto.farina@u-picardie.fr.

