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Abstract

In this Note we recall the braid monodromy of discriminants of hypersurface singularities and present two results from Lönne
(2003): the braid monodromy associated to hypersurface singularities of Brieskorn–Pham type is given explicitly in terms of finitely
many braids, and we show how this leads to very nice finite presentations of fundamental groups of the discriminant complements.
To cite this article: M. Lönne, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Groupe fondamental du complément de la discriminante des singularités de Brieskorn–Pham. En cette Note nous rapellons
la monodromie de tresses pour le discriminants de singularités d’une hypersurface et nous présentons deux résultats de Lönne
(2003) : la monodromie de tresses associée aux singularités de Brieskorn–Pham est donnée par un nombre fini de tresses, et
nous en déduisons une très belle présentation finie du groupe fondamental d’un complément d’une discriminante. Pour citer cet
article : M. Lönne, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The topic of discriminant complement of hypersurface singularities has attracted much attention since long ago. In
the case of simple singularities such complements are identified as spaces of regular orbits for the Weyl group of the
same type and are shown to be aspherical. Their fundamental groups are given by the Artin–Brieskorn groups of the
same type with a natural finite presentation encoded by the corresponding Dynkin diagram. So there is a strong link
to natural combinatorial structures.

Sadly enough there has not been much progress towards a solution of the problems, formulated by Brieskorn
in [3], which he intended as guidelines to the case of more general singularities. There he asked explicitly for the
fundamental group and suggested obtaining such groups from a generic plane section using the theorem of Zariski
and van Kampen, cf. [16,10].
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In fact our recent achievement [11] in case of Brieskorn–Pham polynomials is based on this idea, but relies heavily
on the investigation of non-generic plane section and their relation to generic ones.

2. Braid monodromy

First recall that a holomorphic function f , more precisely a holomorphic function germ, is studied by means of
versal unfoldings, e.g. given by a function

F(x, z,u) = f (x) − z +
∑

biui,

such that the bi and the Jacobian ideal of f span the ideal of holomorphic function germs vanishing at the origin.
In case of a semi-universal unfolding the unfolding dimension is given by the Milnor number μ = μ(f ) and we

get a diagram

(z, u1, . . . , uμ−1) ∈ Cμ ⊃ D = {
(z, u) | F−1

z,u (0) is singular
}⏐� p

⏐� ⏐�
(u1, . . . , uμ−1) ∈ Cμ−1 ⊃ B = {u | F0,u is not Morse}.

The restriction p|D of the projection to the discriminant D is a finite map, such that the branch set coincides with the
bifurcation set B.

The key step is to find a natural fibre bundle structure for the restriction of p to p−1(Cμ−1 \ B) \D. To cope with
the inherent local character of our set-up we further restrict to a local neighbourhood which is a closed disc bundle
over a contractible base, such that all disc boundaries are disjoint from D. We thus get a fibre bundle of μ-punctured
discs with trivialisable boundary. Hence the monodromy takes values in the group of classes of diffeomorphisms up
to isotopy fixing the boundary.

This approach follows the idea of Enriques and Zariski, which they used in their study of covers branched along
plane curves [4,16], and which has been successfully revived by Moishezon [12] under the notion of braid monodromy.

The theory of polynomial coverings of Hansen, [8], provides another framework to get a structure homomorphism
from the fundamental group of the base to the group of classes of diffeomorphisms of the μ-punctured disc fibre up
to isotopy fixing the boundary, which is naturally identified with the braid group Brμ up to inner automorphisms. The
same map is induced by the Lyashko–Looijenga classifying map to the space Cμ of monic polynomials of degree μ,
which takes the complement of the bifurcation set to the complement of the set � of polynomials with multiple roots.

Definition 2.1. The braid monodromy homomorphism is the map

LL∗ :π1
(
Cμ−1 \B) → π1

(
Cμ \ �

) ∼= Brμ,

(the fundamental group of the left is to be understood in the local, i.e. in the germ sense).

To determine the fundamental group of the discriminant complement, we only need a weaker invariant:

Definition 2.2. The braid monodromy group is the image imLL∗ ⊂ Brμ, which up to conjugation is a well-defined
invariant of the right equivalence class of f .

3. Brieskorn–Pham polynomials

By adding inductively a pure monomial in an additional variable to the pure monomial corresponding to a type A

singularity we get polynomials, which figure prominently in the work of Brieskorn and Pham:

Definition 3.1. A polynomial f ∈ C[x1, . . . , xn] is called Brieskorn–Pham polynomial, if with li ∈ Z>0

f (x1, . . . , xn) = x
l1+1
1 + · · · + xln+1

n .

To our ends we recall a result of which Pham, Gabrielov and Hefez and Lazzeri all have their share:
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Theorem 3.2. [14,5,9]. Let M denote the Milnor fibre associated to a polynomial f = x
l1+1
1 + · · · + x

ln+1
n of

Brieskorn–Pham type stabilised to dimension N ≡ 2(4). Then HN(M) has a geometrically distinguished basis {vi}
indexed by the lexicographically ordered set of finite sequences of length n

I = {i1i2 · · · in | 1 � iν � lν for 1 � ν � n},
and the intersection product is determined by

〈vi, vj 〉 =
{0 if |iν − jν | > 1 for some ν,

0 if (iν − jν)(iν′ − jν′) < 0 for some ν, ν′,
−(−1)

∑
iν−jν else.

(1)

It is customary to encode the given datum vi, 〈vi, vj 〉 in a Dynkin diagram, a graph, of which the vertices are
labelled in bijection to indices i ∈ I , with edges in bijection to (i, j) such that 〈vi, vj 〉 = 1 and broken edges in
bijection to (i, j) such that 〈vi, vj 〉 = −1.

Example 1. In case n = 1 we draw the Dynkin diagram for f (x) = x5 (of type A4) and in case n = 2 we reproduce
the diagram for f (x) = x6

1 + x3
2 (parabolic of type J10, cf. [1]), which has been given by Gabrielov [5, Example 6]
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4. Results

To state our results we use the band generators σi,j of the braid group, cf. [2], which are conjugates of the standard
(Artin-)generators σi = σi,i+1 and inductively related by the formula σi,j+1 = σjσi,j σ

−1
j for j > i:

Theorem 4.1. Let f be a Brieskorn–Pham polynomial f = x
l1+1
1 + · · · + x

ln+1
n .

Then the braid monodromy group is generated by the set of braids{
σ 2

i,j | 〈vi, vj 〉 = 0
} ∪ {

σ 3
i,j | 〈vi, vj 〉 = 0

} ∪ {
σ 2

i,j σ
2
i,kσ

−2
i,j | 〈vi, vj 〉〈vi, vk〉〈vj , vk〉 = 0, i < j < k

}
.

This result is obviously known in case n = 1, the case of type A singularities. The first part of the proof in [11]
then establishes the claim in case n = 2, which is also a cornerstone in the second part to make induction work from
n = 2 onwards. In fact an inductive argument starting from another known case like Dn or En type singularities should
be possible with only minor adjustments in the iteration step, thus establishing a (weak) Thom–Sebastiani principle,
cf. [15]: The braid monodromy group of f (x) + g(y) with g of Brieskorn–Pham type is determined by that of f and
that of g.

To use the theorem on the fundamental group we employ the argument of Zariski and van Kampen, cf. [10]. It relies
on the choice of a geometric basis – or good ordered system [12] – which is a customary tool to identify the action
of the group of isotopy classes of diffeomorphisms on the fundamental group of a fibre with the right Artin action of
the abstract braid group on the free generators t1, . . . , tμ given by (ti)σj = ti if j = i, i + 1, (tj )σj = tj tj+1t

−1
j and

(tj+1)σj = tj .

Theorem 4.2. Given a hypersurface germ with braid monodromy group generated by braids {βs} in Brn. Then the
fundamental group of the complement is presented as〈

t1, . . . , tn | t−1
i (ti )βs,1 � i � n, for all βs

〉
.

In the case that a braid βs is a conjugate of a power of σ1, it is easy to see, that the relations t−1
i (ti )βs are the con-

sequence of a single relation t−1
is

(tis )βs , where is is the label of any of the both strands actually twisted by βs . Hence
with the generators of the braid monodromy group given by the theorem, the number of relations drops considerably
and a straightforward computation yields:
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Theorem 4.3. Let f be a Brieskorn–Pham polynomial f = x
l1+1
1 + · · · + x

ln+1
n .

Then the fundamental group of the discriminant complement in a versal unfolding of f is presentable with gener-
ators ti in bijection to vanishing cycles vi if {vi, i ∈ I } is a basis of the Milnor lattice of f as above〈

ti , i ∈ I

∣∣∣∣∣∣
ti tj = tj ti if 〈vi, vj 〉 = 0,

ti tj ti = tj ti tj if 〈vi, vj 〉 = 0,

ti tj tkti = tj tkti tj if 〈vi, vj 〉〈vi, vk〉〈vj , vk〉 = 0, i < j < k.

〉

The appealing aspects of this assertion are

(i) that it obviously generalises the corresponding claim for simple hypersurface singularities with respect to the tree
intersection diagrams for their Milnor lattices, where the last case is void,

(ii) and that it rises immediate hopes that its validity extends to even more general singularities.

However, although we have some support for this hope, one has to be very cautious, since the ‘correct’ Dynkin diagram
has to be found, which seems not an easy task for a general singularity.

Remarks. (1) In the terminology of F. Napolitano [13], who extended the Enriques–Zariski ideas and defined pseudo-
homology groups Hi , we have given a finite presentation of H0(D) ∼= π1(Cμ −D) but we think that to approach the
higher groups one needs other geometric ideas.

(2) Givental and Shekhtman, cf. [7,6], introduced a refined monodromy map with domain π1(Cμ −D) and values
in a generalised Hecke algebra. It may be worthwhile to determine the kernel and use our explicit presentation.

References

[1] V.I. Arnold, V.V. Goryunov, O.V. Lyashko, V.A. Vasilev, Dynamical Systems VI, Springer, Berlin, 1993.
[2] J. Birman, K. Ko, S.-J. Lee, A new approach to the word and the conjugacy problems in the braid groups, Adv. Math. 139 (1998) 322–353.
[3] E. Brieskorn, Vue d’ensemble sur les problèmes de monodromie, in: Singularités à Cargèse, Rencontre sur les Singularités en Géométrie

Analytique, Inst. Études sci. de Cargèse, 1972, Asterisque, Nos. 7 et 8, Soc. Math. France, Paris, 1973, pp. 393–413.
[4] F. Enriques, Sulla costruzione delle funzioni algebriche di due variabili possedenti una data curva di diramazione, Ann. Mat. Pura Appl. 1 (1)

(1924) 185–198.
[5] A.M. Gabrielov, Intersection matrices for certain singularities, Funct. Anal. Appl. 7 (1973) 182–193.
[6] A.B. Givental, Twisted Picard-Lefschetz formulas, Funct. Anal. Appl. 22 (1) (1988) 10–18.
[7] A.B. Givental, V.V. Shekhtman, Monodromy groups and Hecke algebras, Uspekhi Mat. Nauk 42 (4) (1987) 138–139.
[8] V.L. Hansen, Braids and Coverings, London Math. Soc. Student Texts, vol. 18, Cambridge Univ. Press, 1989.
[9] A. Hefez, F. Lazzeri, The intersection matrix of Brieskorn singularities, Invent. Math. 25 (1974) 143–157.

[10] E.R. van Kampen, On the fundamental group of an algebraic plane curve, Amer. J. Math. 55 (1933) 255–260.
[11] M. Lönne, Braid monodromy of hypersurface singularities, Habilitationsschrift, Hannover, 2003, math.AG/0602371.
[12] B. Moishezon, Stable branch curves and braid monodromies, in: Algebraic Geometry, Chicago, 1980, Lecture Notes in Math., vol. 862,

Springer, Heidelberg, 1981, pp. 107–192.
[13] F. Napolitano, Pseudo-homology of complex hypersurfaces, C. R. Acad. Sci. Paris Sér. I Math. 328 (11) (1999) 1025–1030.
[14] F. Pham, Formules de Picard Lefschetz généralisées et ramification des intégrales, Bull. Soc. Math. France 93 (1965) 333–367.
[15] M. Sebastiani, R. Thom, Un résultat sur la monodromie, Invent. Math. 13 (1971) 90–96.
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