ELSEVIER

Algebraic Geometry

Construction of Galois covers of curves with groups of SL_{2}-type ${ }^{\text {w }}$

Chia-Fu Yu ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Institute of Mathematics, Academia Sinica, 128, Academia Rd. Sec. 2, Nankang, Taipei, Taiwan
${ }^{\mathrm{b}}$ Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

Received 10 April 2007; accepted 30 May 2007
Available online 13 July 2007
Presented by Jean-Pierre Serre

Abstract

We give a construction of étale Galois covers of algebraic curves over a field of positive characteristic with a prescribed system of finite groups of SL 2 -type. To cite this article: C.-F. Yu, C. R. Acad. Sci. Paris, Ser. I 345 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Construction de rêvetements galoisiens avec groupes d'un $\mathbf{S L}_{\mathbf{2}}$-type. On donne une construction de rêvetements Galoisiens étales de courbes algébriques définies sur un corps de caractéristique positive avec un système prescrit de groupes finis d'un SL $_{2}$-type. Pour citer cet article : C.-F. Yu, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note we give a construction of étale Galois covers of algebraic curves over a field of positive characteristic with a prescribed system of finite groups. Consider a datum (p, ℓ, R) as defined follows:

- p and ℓ are different rational primes;
- R is the ring of integers of a finite product L of local fields over \mathbb{Q}_{ℓ}.

The question studied here is the following:
(Q) Can one find a smooth connected projective algebraic curve X over $\overline{\mathbb{F}}_{p}$ so that for any positive integer m there is a connected étale Galois cover $\pi_{m}: Y_{m} \rightarrow X$ with Galois group $G_{m}=\operatorname{SL}_{2}\left(R / \ell^{m} R\right)$? Furthermore, can one make the covers $\pi_{m}: Y_{m} \rightarrow X$ compatible with the projective system $\left(G_{m}\right)$?

We answer the question (\mathbf{Q}) affirmatively, namely we prove the following:

[^0]Theorem 1.1. Given a datum (p, ℓ, R) as above, then there is a smooth connected projective curve X over $\overline{\mathbb{F}}_{p}$ and a compatible system of connected étale Galois covers $\pi_{m}: Y_{m} \rightarrow X$ with Galois group $\mathrm{SL}_{2}\left(R / \ell^{m} R\right)$.

We find a totally real number field F of degree $d=\operatorname{dim}_{\mathbb{Q}_{\ell}} L$ so that (i) $O_{F} \otimes \mathbb{Z}_{\ell} \simeq R$ and (ii) the prime p splits completely in F. Let \mathbf{M}_{F} be the Hilbert modular variety associated to the totally real field F. The curve X is constructed in the reduction $\mathbf{M}_{F} \otimes \overline{\mathbb{F}}_{p}$ modulo p by vanishing $d-1$ Hasse invariants. The cover Y_{m} arises from the monodromy group for the ℓ^{m}-torsion subgroup of the universal family restricted on X.

The main tool is the ℓ-adic monodromy of Hecke invariant subvarieties in the moduli spaces of Abelian varieties developed by Chai [1]. This technique confirms that the curves X and Y_{m} constructed as above are irreducible. The main theorem for Hilbert modular varieties is stated in Section 2.

The construction above provides a solution to the question (\mathbf{Q}) when $d>1$. In case of $d=1$, one replaces R by $\mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}$ and proceeds the same construction. By replacing the covers Y_{m} by $Y_{m} /\left(1 \times \mathrm{SL}_{2}\left(\mathbb{Z} / \ell^{m} \mathbb{Z}\right)\right.$), one yields a desired compatible system of étale Galois covers.

2. Hecke invariant subvarieties

In this section we describe a theorem of Chai on Hecke invariant subvarieties in a Hilbert modular variety.
Let F be a totally real number field of degree g and O_{F} be the ring of integers in F. Let V be a 2-dimensional vector space over F and $\psi: V \times V \rightarrow \mathbb{Q}$ be a \mathbb{Q}-bilinear non-degenerate alternating form such that $\psi(a x, y)=\psi(x, a y)$ for all $x, y \in V$ and $a \in F$. We choose and fix a self-dual O_{F}-lattice $V_{\mathbb{Z}} \subset V$. Let p be a fixed rational prime, not necessarily unramified in F. We choose a projective system of primitive prime-to- p th roots of unity $\zeta=\left(\zeta_{m}\right)_{(m, p)=1} \subset$ $\overline{\mathbb{Q}} \subset \mathbb{C}$. We also fix an embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}$. For any prime-to- p integer $m \geqslant 1$ and any connected $\mathbb{Z}_{(p)}\left[\zeta_{m}\right]$-scheme S, we obtain an isomorphism $\zeta_{m}: \mathbb{Z} / m \mathbb{Z} \xrightarrow{\widetilde{ }} \mu_{m}(S)$.

Let $n \geqslant 3$ be a prime-to- p positive integer and ℓ is a prime with $(\ell, p n)=1$. Let $m \geqslant 0$ be a non-negative integer. Denote by $\mathbf{M}_{F, n \ell^{m}}$ the moduli space over $\mathbb{Z}_{(p)}\left[\zeta_{n \ell^{m}}\right]$ that parametrizes equivalence classes of objects $(A, \lambda, \iota, \eta)_{S}$ over a connected locally Noetherian $\mathbb{Z}_{(p)}\left[\zeta_{n \ell^{m}}\right]$-scheme S, where

- (A, λ) is a principally polarized Abelian scheme over S of relative dimension g;
$-\imath: O_{F} \rightarrow \operatorname{End}_{S}(A)$ is a ring monomorphism such that $\lambda \circ \iota(a)=\iota(a)^{t} \circ \lambda$ for all $a \in O_{F}$; and
$-\eta: V_{\mathbb{Z}} / n \ell^{m} V_{\mathbb{Z}} \xrightarrow{\sim} A\left[n \ell^{m}\right](S)$ is an O_{F}-linear isomorphism such that $e_{\lambda}(\eta(x), \eta(y))=\zeta_{n \ell^{m}}(\psi(x, y))$, for $x, y \in$ $V_{\mathbb{Z}} / n \ell^{m} V_{\mathbb{Z}}$, where e_{λ} is the Weil pairing induced by the polarization λ.

Let G be the automorphism group scheme over \mathbb{Z} associated to the pair $\left(V_{\mathbb{Z}}, \psi\right)$. Let $\Gamma\left(n \ell^{m}\right) \subset G(\mathbb{Z})$ be the kernel of the reduction map $G(\mathbb{Z}) \rightarrow G\left(\mathbb{Z} / n \ell^{m} \mathbb{Z}\right)$. It is well-known that one has the complex uniformization $\mathbf{M}_{F, n \ell^{m}}(\mathbb{C}) \simeq$ $\Gamma\left(n \ell^{m}\right) \backslash G(\mathbb{R}) / \mathrm{SO}(2, \mathbb{R})^{g}$. In particular, the geometric generic fiber $\mathbf{M}_{F, n \ell^{m}} \otimes \overline{\mathbb{Q}}$ is connected. It follows from the arithmetic compactification constructed in Rapoport [5] that the geometric special fiber $\mathbf{M}_{F, n} \ell^{m} \otimes \overline{\mathbb{F}}_{p}$ is also connected. Write $M_{n \ell^{m}}:=\mathbf{M}_{F, n \ell^{m}} \otimes \overline{\mathbb{F}}_{p}$ for the reduction modulo p of the moduli scheme $\mathbf{M}_{F, n \ell^{m}}$. We have a natural morphism $\pi_{m, m^{\prime}}: M_{n \ell^{m^{\prime}}} \rightarrow M_{n \ell^{m}}$, for $m<m^{\prime}$, which is induced from the map $(A, \lambda, \iota, \eta) \mapsto\left(A, \lambda, \iota, \ell^{m^{\prime}-m} \eta\right)$. Let $\widetilde{M}_{n}:=$ $\left(M_{n \ell^{m}}\right)_{m \geqslant 0}$ be the tower of this projective system.

Let $(\mathcal{X}, \lambda, \iota, \eta) \rightarrow M_{n}$ be the universal family. The cover $M_{n \ell^{m}}$ represents the étale sheaf

$$
\begin{equation*}
\mathcal{P}_{m}:=\underline{\operatorname{Isom}}_{M_{n}}\left(\left(V_{\mathbb{Z}} / \ell^{m} V_{\mathbb{Z}}, \psi\right),\left(\mathcal{X}\left[\ell^{m}\right], e_{\lambda}\right) ; \zeta_{\ell^{m}}\right) \tag{1}
\end{equation*}
$$

of O_{F}-linear symplectic level- ℓ^{m} structures with respect to $\zeta_{\ell^{m}}$. This is a $G\left(\mathbb{Z} / \ell^{m} \mathbb{Z}\right)$-torsor. Let \bar{x} be a geometric point in M_{n}. Choose an O_{F}-linear isomorphism $y: V \otimes \mathbb{Z}_{\ell} \simeq T_{\ell}\left(\mathcal{X}_{\bar{x}}\right)$ which is compatible with the polarizations with respect to ζ. This amounts to choose a geometric point in \widetilde{M}_{n} over the point \bar{x}. The action of the geometric fundamental group $\pi_{1}\left(M_{n}, \bar{x}\right)$ on the system of fibers $\left(\mathcal{X}_{\bar{x}}\left[\ell^{m}\right]\right)_{m}$ gives rise to the monodromy representation $\rho_{M_{n}, \ell}: \pi_{1}\left(M_{n}, \bar{x}\right) \rightarrow$ $\operatorname{Aut}_{O_{F}}\left(T_{\ell}\left(\mathcal{X}_{\bar{x}}\right), e_{\lambda}\right)$, and through the choice of y to the monodromy representation (using the same notation)

$$
\begin{equation*}
\rho_{M_{n}, \ell}: \pi_{1}\left(M_{n}, \bar{x}\right) \rightarrow G\left(\mathbb{Z}_{\ell}\right) . \tag{2}
\end{equation*}
$$

The connectedness of \widetilde{M}_{n} affirms that the monodromy map $\rho_{M_{n}, \ell}$ is surjective.
For any non-negative integer $m \geqslant 0$, let $\mathcal{H}_{\ell, m}$ be the moduli space over $\overline{\mathbb{F}}_{p}$ that parametrizes equivalence classes of objects $\left(\underline{A}_{i}=\left(A_{i}, \lambda_{i}, \iota_{i}, \eta_{i}\right), i=1,2,3 ; \varphi_{1}, \varphi_{2}\right)$ as the diagram $\underline{A}_{1} \stackrel{\varphi_{1}}{\longleftrightarrow} \underline{A}_{3} \xrightarrow{\varphi_{2}} \underline{A}_{2}$, where

- each \underline{A}_{i} is a g-dimensional polarized Abelian O_{F}-variety with a symplectic level-n structure, and both \underline{A}_{1} and \underline{A}_{2} are in M_{n};
- φ_{1} and φ_{2} are O_{F}-linear isogenies of degree ℓ^{m} that preserve the polarizations and level structures.

Let $\mathcal{H}_{\ell}:=\bigcup_{m \geqslant 0} \mathcal{H}_{\ell, m}$. An ℓ-adic Hecke correspondence is an irreducible component \mathcal{H} of \mathcal{H}_{ℓ} together with natural projections pr_{1} and pr_{2}. A subset Z of M_{n} is called ℓ-adic Hecke invariant if $\mathrm{pr}_{2}\left(\mathrm{pr}_{1}^{-1}(Z)\right) \subset Z$ for any ℓ-adic Hecke correspondence $\left(\mathcal{H}, \mathrm{pr}_{1}, \mathrm{pr}_{2}\right)$. If Z is an ℓ-adic Hecke invariant, locally closed subvariety of M_{n}, then the Hecke correspondences induce correspondences on the set $\Pi_{0}(Z)$ of geometrically irreducible components. We say $\Pi_{0}(Z)$ is ℓ-adic Hecke transitive if the ℓ-adic Hecke correspondences operate transitively on $\Pi_{0}(Z)$, that is, for any two maximal points η_{1}, η_{2} of Z there is an ℓ-Hecke correspondence $\left(\mathcal{H}, \mathrm{pr}_{1}, \mathrm{pr}_{2}\right)$ so that $\eta_{2} \in \operatorname{pr}_{2}\left(\operatorname{pr}_{1}^{-1}\left(\eta_{1}\right)\right)$.

Theorem 2.1. (Chai) Let Z be an ℓ-adic Hecke invariant, smooth locally closed subvariety of M_{n}. Let $\bar{\eta}$ be a geometric generic point of an irreducible component Z^{0} of Z. Suppose that the Abelian variety $A_{\bar{\eta}}$ corresponding to the point $\bar{\eta}$ is not supersingular, and that the set $\Pi_{0}(Z)$ is ℓ-adic Hecke transitive. Then the monodromy representation $\rho_{Z^{0}, \ell}: \pi_{1}\left(Z^{0}, \bar{\eta}\right) \rightarrow G\left(\mathbb{Z}_{\ell}\right)$ is surjective and Z is irreducible.

The proof of this theorem is given by Chai [1] for Siegel modular varieties, which uses the semi-simplicity of the geometric monodromy group of a pure \mathbb{Q}_{ℓ}-sheaf on a variety over a finite field due to Grothendieck and Deligne [2, Corollary 1.3 .9 and Theorem 3.4.1]. Chai's proof also works for Hilbert modular varieties as stated in Theorem 2.1; see an expository account in [7, Section 6]. Let $Z_{m}:=M_{n \ell^{m}} \times_{M_{n}} Z$. Theorem 2.1 also implies that Z_{m} is irreducible provided the conditions for Z are satisfied.

3. The construction

Lemma 3.1 (Krasner's Lemma). Let k be a local field of characteristic zero and $f(X)$ be a monic separable polynomial of degree n. If $g(X)$ is a monic polynomial of degree n whose coefficients are sufficiently close to those of $f(X)$. Then $g(X)$ is separable and there is an isomorphism of k-algebras $k[X] /(g(X)) \simeq k[X] /(f(X))$.

Lemma 3.2. Let S be a finite set of places of a number field k. Let L_{v}, for each $v \in S$, be a product of local fields over k_{v} of same degree $\left[L_{v}: k_{v}\right]=n$, where k_{v} is the completion of k at v. Then there is a number field F over k of degree n such that $F \otimes_{k} k_{v} \simeq L_{v}$ for all $v \in S$.

Proof. This follows from an effective version of Hilbert's irreducibility theorem [3, Theorem 1.3] and Krasner's lemma (Lemma 3.1).

Corollary 3.3. Given a datum (p, ℓ, R) as before, there is a totally real number field F of degree $d=\operatorname{dim}_{\mathbb{Q}_{\ell}} L$ so that (i) $O_{F} \otimes \mathbb{Z}_{\ell} \simeq R$ and (ii) the prime p splits completely in F.

Proof. This follows from Lemma 3.2.
Assume that $d>1$. Let F be a totally real number field as in Corollary 3.3. Write the set of ring homomorphisms from O_{F} to \mathbb{F}_{p} as $\left\{\sigma_{1}, \ldots, \sigma_{d}\right\}$. Define modular varieties M_{n} and $M_{n \ell^{m}}$ over $\overline{\mathbb{F}}_{p}$ as in Section 2 (with a choice of a system of roots of unity $\zeta)$. Let $a:(\mathcal{X}, \lambda, \iota, \eta) \rightarrow M_{n}$ be the universal family. Let $H_{\mathrm{DR}}^{1}\left(\mathcal{X} / M_{n}\right)$ be the algebraic de Rham cohomology; it has a decomposition

$$
\begin{equation*}
H_{\mathrm{DR}}^{1}\left(\mathcal{X} / M_{n}\right)=\bigoplus_{i=1}^{d} H_{\mathrm{DR}}^{1}\left(\mathcal{X} / M_{n}\right)^{i} \tag{3}
\end{equation*}
$$

with respect to the O_{F}-action, where $H_{\mathrm{DR}}^{1}\left(\mathcal{X} / M_{n}\right)^{i}$ is the σ_{i}-isotypic component. Each component $H_{\mathrm{DR}}^{1}\left(\mathcal{X} / M_{n}\right)^{i}$ is a locally free $\mathcal{O}_{M_{n}}$-module of rank 2. The Hodge filtration

$$
\begin{equation*}
0 \rightarrow \omega \mathcal{X} / M_{n} \rightarrow H_{\mathrm{DR}}^{1}\left(\mathcal{X} / M_{n}\right) \rightarrow R^{1} a_{*} \mathcal{O}_{\mathcal{X}} \rightarrow 0 \tag{4}
\end{equation*}
$$

also has the same decomposition

$$
\begin{equation*}
0 \rightarrow \omega_{\mathcal{X} / M_{n}}^{i} \rightarrow H_{\mathrm{DR}}^{1}\left(\mathcal{X} / M_{n}\right)^{i} \rightarrow R^{1} a_{*} \mathcal{O}_{\mathcal{X}}^{i} \rightarrow 0, \tag{5}
\end{equation*}
$$

for all $1 \leqslant i \leqslant d$. Let $F_{\mathcal{X} / M_{n}}: \mathcal{X} \rightarrow \mathcal{X}^{(p)}$ be the relative Frobenius morphism, where $\mathcal{X}^{(p)}$ is base change of \mathcal{X} by the absolute Frobenius morphism $F_{M_{n}}: M_{n} \rightarrow M_{n}$. The morphism $F_{\mathcal{X} / M_{n}}$, by functoriality, induces an $\mathcal{O}_{M_{n}}$-linear map $F_{i}: R^{1} a_{*} \mathcal{O}_{\mathcal{X}(p)}^{i} \rightarrow R^{1} a_{*} \mathcal{O}_{\mathcal{X}}^{i}$. By duality, one has $h_{i}:=F_{i}^{\vee}: \omega_{\mathcal{X} / M_{n}}^{i} \rightarrow \omega_{\mathcal{X}(p) / M_{n}}^{i}$. Since $\omega_{\mathcal{X}(p) / M_{n}}^{i} \simeq\left(\omega_{\mathcal{X} / M_{n}}^{i}\right)^{\otimes p}$, the homomorphism h_{i} is an element in $H^{0}\left(M_{n}, \mathcal{L}^{i}\right)$, where $\mathcal{L}^{i}:=\left(\omega_{\mathcal{X} / M_{n}}^{i}\right)^{\otimes(p-1)}$.

Let X be the closed subscheme of M_{n} defined by $h_{i}=0$ for $2 \leqslant i \leqslant d$. Let $Y_{m}:=M_{n \ell^{m}} \times{ }_{M_{n}} X$. It is clear that X is stable under all ℓ-adic Hecke correspondences. We verify the conditions in Theorem 2.1:

Lemma 3.4.

(1) The subscheme X is a smooth projective curve over $\overline{\mathbb{F}}_{p}$.
(2) Any maximal point of X is not supersingular.
(3) The set $\Pi_{0}(X)$ of irreducible components is ℓ-adic Hecke transitive.

Proof. Since points in X are not ordinary, it follows from the semi-stable reduction theorem that X is proper. By the Serre-Tate theorem, the deformations in M_{n} are the same as a product of deformations in an elliptic modular curve. It is well-known that the zero locus of the Hasse invariant is reduced and ordinary elliptic curves are dense in the $\bmod p$ of an elliptic modular curve. From this the statements (1) and (2) follows. The statement (3) is a special case of [7, Theorem 5.1].

By Theorem 2.1, the curves X and Y_{m} are irreducible. One also has $\operatorname{Aut}\left(Y_{m} / X\right)=G\left(\mathbb{Z} / \ell^{m} \mathbb{Z}\right)=\mathrm{SL}_{2}\left(R / \ell^{m} R\right)$. The construction is complete. This finishes the proof of Theorem 1.1. The following question to which we do not know the answer. What is the genus of X as above?

Remark 1. (i) Regardless the construction, the statement itself of Theorem 1.1 can be proved by standard methods. Such an X can be obtained by a specialization argument as in [6, Prop. 2.5 and Cor. 3.5] and the Grothendieck specialization theorem for algebraic fundamental groups.
(ii) Consider quaternion algebras B over a totally real number field F so that B splits at exactly one of real places of F and B splits at all primes of F over p. Let \mathbf{M}_{B} be the Shimura curve associated to B and take $X:=\mathbf{M}_{B} \otimes \overline{\mathbb{F}}_{p}$ to be the reduction modulo p (see [4] for a nice summary of Ihara's work on Shimura curves). This exhibits a solution to the question (\mathbf{Q}) for not just a prescribed system arising from SL_{2} over $F \otimes \mathbb{Q}_{\ell}$ but also that from its inner twist.

Acknowledgements

This note has been prepared during the author's stay at MPIM in Bonn; he thanks the Institut for kind hospitality and an excellent working environment. He is grateful to Akio Tamagawa for helpful comments (Remark 1) which justify the content of this note.

References

[1] C.-L. Chai, Monodromy of Hecke-invariant subvarieties. Special issue in memory of A. Borel, Pure Appl. Math. Q. 1 (2005) $291-303$.
[2] P. Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980) 137-252.
[3] T. Ekedahl, An effective version of Hilbert's irreducibility theorem, in: Séminaire de Théorie des Nombres, Paris 1988-1989, Progr. Math., vol. 91, Birkhäuser Boston, 1990, pp. 241-249.
[4] Y. Ihara, Shimura curves over finite fields and their rational points, in: Applications of Curves Over Finite Fields, Seattle, WA, 1997, Contemp. Math., vol. 245, 1999, pp. 15-23.
[5] M. Rapoport, Compactifications de l'espaces de modules de Hilbert-Blumenthal, Compositio Math. 36 (1978) $255-335$.
[6] K. Stevenson, Galois groups of unramified covers of projective curves in characteristic p, J. Algebra 182 (1996) $770-804$.
[7] C.-F. Yu, Irreducibility of the Hilbert-Blumenthal moduli spaces with parahoric level structure, MPIM Preprint 2007-37, 21 pp.

[^0]: The research is partially supported by NSC $96-2115-\mathrm{M}-001-001$.
 E-mail address: chiafu@math.sinica.edu.tw.

