

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 345 (2007) 77-80

COMPTES RENDUS MATHEMATIQUE

http://france.elsevier.com/direct/CRASS1/

Algebraic Geometry

Construction of Galois covers of curves with groups of SL₂-type [☆]

Chia-Fu Yu^{a,b}

^a Institute of Mathematics, Academia Sinica, 128, Academia Rd. Sec. 2, Nankang, Taipei, Taiwan
 ^b Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

Received 10 April 2007; accepted 30 May 2007

Available online 13 July 2007

Presented by Jean-Pierre Serre

Abstract

We give a construction of étale Galois covers of algebraic curves over a field of positive characteristic with a prescribed system of finite groups of SL₂-type. *To cite this article: C.-F. Yu, C. R. Acad. Sci. Paris, Ser. I 345 (2007).* © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Construction de rêvetements galoisiens avec groupes d'un SL₂-type. On donne une construction de rêvetements Galoisiens étales de courbes algébriques définies sur un corps de caractéristique positive avec un système prescrit de groupes finis d'un SL₂-type. *Pour citer cet article : C.-F. Yu, C. R. Acad. Sci. Paris, Ser. I 345 (2007).* © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note we give a construction of étale Galois covers of algebraic curves over a field of positive characteristic with a prescribed system of finite groups. Consider a datum (p, ℓ, R) as defined follows:

- p and ℓ are different rational primes;
- *R* is the ring of integers of a finite product *L* of local fields over \mathbb{Q}_{ℓ} .

The question studied here is the following:

(Q) Can one find a smooth connected projective algebraic curve X over $\overline{\mathbb{F}}_p$ so that for any positive integer m there is a connected étale Galois cover $\pi_m: Y_m \to X$ with Galois group $G_m = \operatorname{SL}_2(R/\ell^m R)$? Furthermore, can one make the covers $\pi_m: Y_m \to X$ compatible with the projective system (G_m) ?

We answer the question (**Q**) affirmatively, namely we prove the following:

^{*} The research is partially supported by NSC 96-2115-M-001-001. E-mail address: chiafu@math.sinica.edu.tw.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2007.05.027

Theorem 1.1. Given a datum (p, ℓ, R) as above, then there is a smooth connected projective curve X over $\overline{\mathbb{F}}_p$ and a compatible system of connected étale Galois covers $\pi_m: Y_m \to X$ with Galois group $SL_2(R/\ell^m R)$.

We find a totally real number field F of degree $d = \dim_{\mathbb{Q}_{\ell}} L$ so that (i) $O_F \otimes \mathbb{Z}_{\ell} \simeq R$ and (ii) the prime p splits completely in F. Let \mathbf{M}_F be the Hilbert modular variety associated to the totally real field F. The curve X is constructed in the reduction $\mathbf{M}_F \otimes \overline{\mathbb{F}}_p$ modulo p by vanishing d-1 Hasse invariants. The cover Y_m arises from the monodromy group for the ℓ^m -torsion subgroup of the universal family restricted on X.

The main tool is the ℓ -adic monodromy of Hecke invariant subvarieties in the moduli spaces of Abelian varieties developed by Chai [1]. This technique confirms that the curves X and Y_m constructed as above are irreducible. The main theorem for Hilbert modular varieties is stated in Section 2.

The construction above provides a solution to the question (**Q**) when d > 1. In case of d = 1, one replaces R by $\mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}$ and proceeds the same construction. By replacing the covers Y_m by $Y_m/(1 \times SL_2(\mathbb{Z}/\ell^m\mathbb{Z}))$, one yields a desired compatible system of étale Galois covers.

2. Hecke invariant subvarieties

In this section we describe a theorem of Chai on Hecke invariant subvarieties in a Hilbert modular variety.

Let F be a totally real number field of degree g and O_F be the ring of integers in F. Let V be a 2-dimensional vector space over F and $\psi: V \times V \to \mathbb{Q}$ be a \mathbb{Q} -bilinear non-degenerate alternating form such that $\psi(ax, y) = \psi(x, ay)$ for all x, $y \in V$ and $a \in F$. We choose and fix a self-dual O_F -lattice $V_{\mathbb{Z}} \subset V$. Let p be a fixed rational prime, not necessarily unramified in F. We choose a projective system of primitive prime-to-pth roots of unity $\zeta = (\zeta_m)_{(m,p)=1} \subset$ $\overline{\mathbb{Q}} \subset \mathbb{C}$. We also fix an embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$. For any prime-to-p integer $m \ge 1$ and any connected $\mathbb{Z}_{(p)}[\zeta_m]$ -scheme *S*, we obtain an isomorphism $\zeta_m : \mathbb{Z}/m\mathbb{Z} \xrightarrow{\sim} \mu_m(S)$.

Let $n \ge 3$ be a prime-to-p positive integer and ℓ is a prime with $(\ell, pn) = 1$. Let $m \ge 0$ be a non-negative integer. Denote by $\mathbf{M}_{F,n\ell^m}$ the moduli space over $\mathbb{Z}_{(p)}[\zeta_{n\ell^m}]$ that parametrizes equivalence classes of objects $(A, \lambda, \iota, \eta)_S$ over a connected locally Noetherian $\mathbb{Z}_{(p)}[\zeta_{n\ell^m}]$ -scheme S, where

- $-(A,\lambda)$ is a principally polarized Abelian scheme over S of relative dimension g;
- $-\iota: O_F \to \operatorname{End}_S(A)$ is a ring monomorphism such that $\lambda \circ \iota(a) = \iota(a)^l \circ \lambda$ for all $a \in O_F$; and
- $-\eta: V_{\mathbb{Z}}/n\ell^m V_{\mathbb{Z}} \xrightarrow{\sim} A[n\ell^m](S)$ is an O_F -linear isomorphism such that $e_{\lambda}(\eta(x), \eta(y)) = \zeta_{n\ell^m}(\psi(x, y))$, for $x, y \in \mathcal{V}$ $V_{\mathbb{Z}}/n\ell^m V_{\mathbb{Z}}$, where e_{λ} is the Weil pairing induced by the polarization λ .

Let G be the automorphism group scheme over \mathbb{Z} associated to the pair $(V_{\mathbb{Z}}, \psi)$. Let $\Gamma(n\ell^m) \subset G(\mathbb{Z})$ be the kernel of the reduction map $G(\mathbb{Z}) \to G(\mathbb{Z}/n\ell^m \mathbb{Z})$. It is well-known that one has the complex uniformization $\mathbf{M}_{F,n\ell^m}(\mathbb{C}) \simeq$ $\Gamma(n\ell^m)\setminus G(\mathbb{R})/\operatorname{SO}(2,\mathbb{R})^g$. In particular, the geometric generic fiber $\mathbf{M}_{F,n\ell^m}\otimes \overline{\mathbb{Q}}$ is connected. It follows from the arithmetic compactification constructed in Rapoport [5] that the geometric special fiber $\mathbf{M}_{F,n\ell^m} \otimes \overline{\mathbb{F}}_p$ is also connected. Write $M_{n\ell^m} := \mathbf{M}_{F,n\ell^m} \otimes \overline{\mathbb{F}}_p$ for the reduction modulo p of the moduli scheme $\mathbf{M}_{F,n\ell^m}$. We have a natural morphism $\pi_{m,m'}: M_{n\ell^{m'}} \to M_{n\ell^m}$, for m < m', which is induced from the map $(A, \lambda, \iota, \eta) \mapsto (A, \lambda, \iota, \ell^{m'-m}\eta)$. Let $\widetilde{\widetilde{M}}_n :=$ $(M_{n\ell^m})_{m\geq 0}$ be the tower of this projective system.

Let $(\mathcal{X}, \lambda, \iota, \eta) \to M_n$ be the universal family. The cover $M_{n\ell^m}$ represents the étale sheaf

$$\mathcal{P}_m := \underline{Isom}_{M_n} \left(\left(V_{\mathbb{Z}}/\ell^m V_{\mathbb{Z}}, \psi \right), \left(\mathcal{X}[\ell^m], e_\lambda \right); \zeta_{\ell^m} \right)$$
(1)

of O_F -linear symplectic level- ℓ^m structures with respect to ζ_{ℓ^m} . This is a $G(\mathbb{Z}/\ell^m\mathbb{Z})$ -torsor. Let \bar{x} be a geometric point in M_n . Choose an O_F -linear isomorphism $y: V \otimes \mathbb{Z}_{\ell} \simeq T_{\ell}(\mathcal{X}_{\bar{x}})$ which is compatible with the polarizations with respect to ζ . This amounts to choose a geometric point in \widetilde{M}_n over the point \overline{x} . The action of the geometric fundamental group $\pi_1(M_n, \bar{x})$ on the system of fibers $(\mathcal{X}_{\bar{x}}[\ell^m])_m$ gives rise to the monodromy representation $\rho_{M_n,\ell}: \pi_1(M_n, \bar{x}) \to 0$ Aut $O_F(T_\ell(\mathcal{X}_{\bar{X}}), e_{\lambda})$, and through the choice of y to the monodromy representation (using the same notation)

$$\rho_{M_n,\ell}:\pi_1(M_n,\bar{x})\to G(\mathbb{Z}_\ell). \tag{2}$$

The connectedness of \widetilde{M}_n affirms that the monodromy map $\rho_{M_n,\ell}$ is surjective. For any non-negative integer $m \ge 0$, let $\mathcal{H}_{\ell,m}$ be the moduli space over $\overline{\mathbb{F}}_p$ that parametrizes equivalence classes of objects $(\underline{A}_i = (A_i, \lambda_i, \iota_i, \eta_i), i = 1, 2, 3; \varphi_1, \varphi_2)$ as the diagram $\underline{A}_1 \xleftarrow{\varphi_1} \underline{A}_3 \xrightarrow{\varphi_2} \underline{A}_2$, where

- each \underline{A}_i is a g-dimensional polarized Abelian O_F -variety with a symplectic level-*n* structure, and both \underline{A}_1 and \underline{A}_2 are in M_n ;
- $-\varphi_1$ and φ_2 are O_F -linear isogenies of degree ℓ^m that preserve the polarizations and level structures.

Let $\mathcal{H}_{\ell} := \bigcup_{m \ge 0} \mathcal{H}_{\ell,m}$. An ℓ -adic Hecke correspondence is an irreducible component \mathcal{H} of \mathcal{H}_{ℓ} together with natural projections pr_1 and pr_2 . A subset Z of M_n is called ℓ -adic Hecke invariant if $\mathrm{pr}_2(\mathrm{pr}_1^{-1}(Z)) \subset Z$ for any ℓ -adic Hecke correspondence $(\mathcal{H}, \mathrm{pr}_1, \mathrm{pr}_2)$. If Z is an ℓ -adic Hecke invariant, locally closed subvariety of M_n , then the Hecke correspondences induce correspondences on the set $\Pi_0(Z)$ of geometrically irreducible components. We say $\Pi_0(Z)$ is ℓ -adic Hecke transitive if the ℓ -adic Hecke correspondences operate transitively on $\Pi_0(Z)$, that is, for any two maximal points η_1, η_2 of Z there is an ℓ -Hecke correspondence $(\mathcal{H}, \mathrm{pr}_1, \mathrm{pr}_2)$ so that $\eta_2 \in \mathrm{pr}_2(\mathrm{pr}_1^{-1}(\eta_1))$.

Theorem 2.1. (Chai) Let Z be an ℓ -adic Hecke invariant, smooth locally closed subvariety of M_n . Let $\bar{\eta}$ be a geometric generic point of an irreducible component Z^0 of Z. Suppose that the Abelian variety $A_{\bar{\eta}}$ corresponding to the point $\bar{\eta}$ is not supersingular, and that the set $\Pi_0(Z)$ is ℓ -adic Hecke transitive. Then the monodromy representation $\rho_{Z^0,\ell}: \pi_1(Z^0, \bar{\eta}) \to G(\mathbb{Z}_\ell)$ is surjective and Z is irreducible.

The proof of this theorem is given by Chai [1] for Siegel modular varieties, which uses the semi-simplicity of the geometric monodromy group of a pure \mathbb{Q}_{ℓ} -sheaf on a variety over a finite field due to Grothendieck and Deligne [2, Corollary 1.3.9 and Theorem 3.4.1]. Chai's proof also works for Hilbert modular varieties as stated in Theorem 2.1; see an expository account in [7, Section 6]. Let $Z_m := M_{n\ell^m} \times_{M_n} Z$. Theorem 2.1 also implies that Z_m is irreducible provided the conditions for Z are satisfied.

3. The construction

Lemma 3.1 (*Krasner's Lemma*). Let *k* be a local field of characteristic zero and f(X) be a monic separable polynomial of degree *n*. If g(X) is a monic polynomial of degree *n* whose coefficients are sufficiently close to those of f(X). Then g(X) is separable and there is an isomorphism of *k*-algebras $k[X]/(g(X)) \simeq k[X]/(f(X))$.

Lemma 3.2. Let *S* be a finite set of places of a number field *k*. Let L_v , for each $v \in S$, be a product of local fields over k_v of same degree $[L_v : k_v] = n$, where k_v is the completion of *k* at *v*. Then there is a number field *F* over *k* of degree *n* such that $F \otimes_k k_v \simeq L_v$ for all $v \in S$.

Proof. This follows from an effective version of Hilbert's irreducibility theorem [3, Theorem 1.3] and Krasner's lemma (Lemma 3.1). \Box

Corollary 3.3. Given a datum (p, ℓ, R) as before, there is a totally real number field F of degree $d = \dim_{\mathbb{Q}_{\ell}} L$ so that (i) $O_F \otimes \mathbb{Z}_{\ell} \simeq R$ and (ii) the prime p splits completely in F.

Proof. This follows from Lemma 3.2. \Box

Assume that d > 1. Let F be a totally real number field as in Corollary 3.3. Write the set of ring homomorphisms from O_F to \mathbb{F}_p as $\{\sigma_1, \ldots, \sigma_d\}$. Define modular varieties M_n and $M_{n\ell^m}$ over $\overline{\mathbb{F}}_p$ as in Section 2 (with a choice of a system of roots of unity ζ). Let $a : (\mathcal{X}, \lambda, \iota, \eta) \to M_n$ be the universal family. Let $H^1_{\text{DR}}(\mathcal{X}/M_n)$ be the algebraic de Rham cohomology; it has a decomposition

$$H_{\rm DR}^1(\mathcal{X}/M_n) = \bigoplus_{i=1}^d H_{\rm DR}^1(\mathcal{X}/M_n)^i$$
(3)

with respect to the O_F -action, where $H_{DR}^1(\mathcal{X}/M_n)^i$ is the σ_i -isotypic component. Each component $H_{DR}^1(\mathcal{X}/M_n)^i$ is a locally free \mathcal{O}_{M_n} -module of rank 2. The Hodge filtration

$$0 \to \omega_{\mathcal{X}/M_n} \to H^1_{\mathrm{DR}}(\mathcal{X}/M_n) \to R^1 a_* \mathcal{O}_{\mathcal{X}} \to 0$$
(4)

also has the same decomposition

$$0 \to \omega^{i}_{\mathcal{X}/M_{n}} \to H^{1}_{\mathrm{DR}}(\mathcal{X}/M_{n})^{i} \to R^{1}a_{*}\mathcal{O}^{i}_{\mathcal{X}} \to 0,$$
(5)

for all $1 \leq i \leq d$. Let $F_{\mathcal{X}/M_n} : \mathcal{X} \to \mathcal{X}^{(p)}$ be the relative Frobenius morphism, where $\mathcal{X}^{(p)}$ is base change of \mathcal{X} by the absolute Frobenius morphism $F_{M_n} : M_n \to M_n$. The morphism $F_{\mathcal{X}/M_n}$, by functoriality, induces an \mathcal{O}_{M_n} -linear map $F_i : R^1 a_* \mathcal{O}^i_{\mathcal{X}^{(p)}} \to R^1 a_* \mathcal{O}^i_{\mathcal{X}}$. By duality, one has $h_i := F_i^{\vee} : \omega^i_{\mathcal{X}/M_n} \to \omega^i_{\mathcal{X}^{(p)}/M_n}$. Since $\omega^i_{\mathcal{X}^{(p)}/M_n} \simeq (\omega^i_{\mathcal{X}/M_n})^{\otimes p}$, the homomorphism h_i is an element in $H^0(M_n, \mathcal{L}^i)$, where $\mathcal{L}^i := (\omega^i_{\mathcal{X}/M_n})^{\otimes (p-1)}$.

Let X be the closed subscheme of M_n defined by $h_i = 0$ for $2 \le i \le d$. Let $Y_m := M_{n\ell^m} \times_{M_n} X$. It is clear that X is stable under all ℓ -adic Hecke correspondences. We verify the conditions in Theorem 2.1:

Lemma 3.4.

- (1) The subscheme X is a smooth projective curve over $\overline{\mathbb{F}}_p$.
- (2) Any maximal point of X is not supersingular.
- (3) The set $\Pi_0(X)$ of irreducible components is ℓ -adic Hecke transitive.

Proof. Since points in X are not ordinary, it follows from the semi-stable reduction theorem that X is proper. By the Serre–Tate theorem, the deformations in M_n are the same as a product of deformations in an elliptic modular curve. It is well-known that the zero locus of the Hasse invariant is reduced and ordinary elliptic curves are dense in the mod p of an elliptic modular curve. From this the statements (1) and (2) follows. The statement (3) is a special case of [7, Theorem 5.1]. \Box

By Theorem 2.1, the curves X and Y_m are irreducible. One also has $\operatorname{Aut}(Y_m/X) = G(\mathbb{Z}/\ell^m\mathbb{Z}) = \operatorname{SL}_2(R/\ell^m R)$. The construction is complete. This finishes the proof of Theorem 1.1. The following question to which we do not know the answer. *What is the genus of X as above?*

Remark 1. (i) Regardless the construction, the statement itself of Theorem 1.1 can be proved by standard methods. Such an X can be obtained by a specialization argument as in [6, Prop. 2.5 and Cor. 3.5] and the Grothendieck specialization theorem for algebraic fundamental groups.

(ii) Consider quaternion algebras *B* over a totally real number field *F* so that *B* splits at exactly one of real places of *F* and *B* splits at all primes of *F* over *p*. Let \mathbf{M}_B be the Shimura curve associated to *B* and take $X := \mathbf{M}_B \otimes \overline{\mathbb{F}}_p$ to be the reduction modulo *p* (see [4] for a nice summary of Ihara's work on Shimura curves). This exhibits a solution to the question (**Q**) for not just a prescribed system arising from SL₂ over $F \otimes \mathbb{Q}_\ell$ but also that from its inner twist.

Acknowledgements

This note has been prepared during the author's stay at MPIM in Bonn; he thanks the Institut for kind hospitality and an excellent working environment. He is grateful to Akio Tamagawa for helpful comments (Remark 1) which justify the content of this note.

References

- [1] C.-L. Chai, Monodromy of Hecke-invariant subvarieties. Special issue in memory of A. Borel, Pure Appl. Math. Q. 1 (2005) 291–303.
- [2] P. Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980) 137–252.
- [3] T. Ekedahl, An effective version of Hilbert's irreducibility theorem, in: Séminaire de Théorie des Nombres, Paris 1988–1989, Progr. Math., vol. 91, Birkhäuser Boston, 1990, pp. 241–249.
- [4] Y. Ihara, Shimura curves over finite fields and their rational points, in: Applications of Curves Over Finite Fields, Seattle, WA, 1997, Contemp. Math., vol. 245, 1999, pp. 15–23.
- [5] M. Rapoport, Compactifications de l'espaces de modules de Hilbert-Blumenthal, Compositio Math. 36 (1978) 255-335.
- [6] K. Stevenson, Galois groups of unramified covers of projective curves in characteristic p, J. Algebra 182 (1996) 770-804.
- [7] C.-F. Yu, Irreducibility of the Hilbert-Blumenthal moduli spaces with parahoric level structure, MPIM Preprint 2007 37, 21 pp.