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Abstract

For asymptotically Euclidean manifolds of order τ > (n − 2)/2, under the hypothesis that the mass m (according to Arnowitt,
Deser and Misner) exists (in particular if the scalar curvature is � 0 and integrable), there exists a real number A > 0 such that
m � 4(n − 1)A on each end (except if the metric is Euclidean). To cite this article: T. Aubin, C. R. Acad. Sci. Paris, Ser. I 345
(2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Le Masse selon Arnowitz, Deser et Misner. Pour une variété asymptotiquement euclidienne d’ordre τ > (n − 2)/2, sous
l’hypothèse que la masse m (selon Arnowitt, Deser et Misner) existe (notamment si la courbure scalaire est �0 et intégrable), il
existe un réel A > 0 tel que m > 4(n − 1)A sur chaque bout (sauf si la métrique est euclidienne). Pour citer cet article : T. Aubin,
C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Pour une variété asymptotiquement euclidienne d’ordre τ > (n − 2)/2, on suppose que la masse m est définie.
Cela a lieu en particulier si la courbure scalaire est � 0 et intégrable (hypothèses généralement adoptée mais non
nécéssaire). Par une inversion sur chaque bout, après un changement de métrique conforme, le problème est ramené
à l’étude de la masse A en un point P d’ une variété V compacte dont le Laplacien conforme L est inversible. Ce
problème a été traité dans [5] dans toute sa généralité. L’hypothèse τ > (n − 2)/2 correspond à 2ω > n − 6 qui est
une condition nécessaire et suffisante pour que la masse A(P ) soit > 0 (sauf sur la sphère). On en déduit que, pour ce
bout (envoyé sur un voisinage de P ∈ V ), la masse m � 4(n − 1)A est positive.

1. Introduction

Let (Vn, ĝ) be a Riemannian compact C∞ manifold. According to J. Cao [8] or M. Günter [9], there exists a metric
g ∈ [ĝ] conformal to ĝ such that |g| = 1 in a ball BP (δ) in a geodesic coordinates system (r, θ) at P . We define ω
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as the greatest integer for which ‖∇ lW(P )‖ = 0 when |l| < ω, W being the Weyl tensor and l a multi-index with
length |l|.

Denote by G(P,Q) the Green function of L, proportional to Ψ (P, .) defined by:

LΨ = �Ψ + (n − 2)RΨ/4(n − 1) = δP ,

which has r2−n as its principal part at P . Here R is the scalar curvature, δP the Dirac measure at P and r = d(P,Q).
In [5], see also [6], we proved, in all generality, the Positive Mass Conjecture for compact manifolds when L is
invertible. In the ball BP (δ), define the Mass A at P by (

∫
means mean value)

A = lim
r→0

∫
Sn−1(1)

H(r, θ)dσ(θ).

where H(P,Q) = G(P,Q) − r2−n.

Theorem 1. Let P ∈ (Vn, g) be a compact manifold with L invertible. The necessary and sufficient condition in order
that the mass A at P be finite is 2ω(P ) > n − 6. Then A(P ) > 0, except for the sphere in which case A = 0.

So far, the common hypothesis was H(P,Q) = A+ 0(r). Now H(P,Q) may have singularities at P . The hypoth-
esis 2ω(P ) > n− 6, implies that A is finite. Then we proceed as when H(P,Q) was bounded. In this case, it is easier
to consider (at the top of p. 82 of [5]) a radial function γ (with γ /∂W = 1) instead of the function f .

With ψ(r, θ) = δn−2G(r, θ)/(1 + Aδn−2), we get, for some β � 1,

J (ψ) � J (f̃ ) = j (γ ) + O
(
δn−2+β

)
.

Remember that in B(δ0), g is the Cao–Günter’s metric ([8] or [9]). For some k > 0 when r < 2ro and k = 0 when
r > 2ro, we have∫

Sn−1(1)

R(r, θ)dσ(θ) < krα

for some α > n − 4. Moreover, the injectivity radius at P is as large as one wants. Nothing is changed, using the fact
that 2ω > n − 6 implies that the mean value of H(P,Q) on Sn−1(1) is finite.

We introduce the change of variable

r → ρ =
(

δ2−n − (n − 2)

r∫
δ

r1−n dr/h(r)

)−1/(n−2)

(where h(r) is as in [5]), and the function

γ (ρ) = sup
{
0,

[
(δ/ρ)n−2 − εδn−2]/(1 − εδn−2)}.

In Physics, Arnowitt, Deser and Misner [1,2] defined the ‘ADM mass’ for an isolated gravitational system of
dimension 3 of space. Witten proved in [16] the positiveness of the mass when n = 3, using the spinors, an idea used
again by Parker–Taubes [12] and extended to the spin-manifolds of any dimension by Lee–Parker [10]. Recently,
a paper of Lohkamp [11] appeared about this topic. We will comment elsewhere about the works of Schoen and
Schoen–Yau [13–15].

2. Mass

Let us consider the metric g̃ = G4/(n−2)g (see [3]) on a manifold W = V \{P } and let ρ = 1/r . Set K = V \BP (δ),
where δ > 0 is small as usual.

The manifold (W, g̃) is complete, asymptotically Euclidean. Its scalar curvature R̃ vanishes identically and Ω =
W\K is diffeomorphic to BP (δ)\{P } by the inverse mapping ρ → r .

According to our study in [4–6], g = E + O(r2+ω) (where E denotes the Euclidean metric). It follows that g̃ =
E + O(ρ−(2+ω)) + O(ρ2−n).
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Remark 1. If we had started from a conformal metric ḡ = ϕ4/(n−2)g (if we want ϕ(P ) = 1), as Ḡ(P,Q) =
G(P,Q)/ϕ(Q)ϕ(P ), we would obtain on W the same metric g̃.

Definition 1. The mass m(g̃) of the asymptotically flat manifold (W, g̃) is the limit of

γ (ρ) = ω−1
n−1

∫
Sn−1(1)

√∣∣g̃(ρ, θ)
∣∣ g̃ij (∂i g̃ρj − ∂ρg̃ij )(ρ, θ)ρn−1 dσ(θ)

when ρ → ∞ if it exists (here ρ > 1/δ).

We showed in [5] that the mass makes sense (is finite) if 2ω > n − 6. With the coordinate system that we have
defined there, letting ψ = (rn−2G)2/(n−2), shows that this expression is equal to:

γ (ρ) = ω−1
n−1

∫
Sn−1(1)

[
ψn∂ρψ2 − ∂ρψn

]
ρn−1 dσ(θ);

see Aubin [3]. Equivalently,

m(g̃) = lim
ρ→∞ 4(n − 1)

∫
Sn−1(1)

H(1/ρ, θ)dσ(θ).

If 2ω � n − 6, we saw (Aubin [4]) that this integral goes to +∞. In all the other cases, m(g̃) is finite and positive,
except for the sphere.

Theorem 2. In this expression, the mass makes sense only if n < 6 or if 2ω > n−6. Then g̃ is asymptotically Euclidean
(Definition 2) of order 2 + ω when 2ω > n − 6 if n � 4, and of order n − 2 = 1 if n = 3.

3. The Mass in the sense of the Physicists: ADM mass [1,2]

It is generally agreed that the mathematical problem solved in [5] and the problem of the Physicists concerning
the mass are the same. However, actually, it is not so simple, and we will give below, in all generality, the proof of
this fact. In fact, in so doing, we prove an inequality that has been long awaited by Physicists: m � 4(n − 1)A with a
constant A > 0. For an admissible conformal metric ĝ to g̃, m̂ � 4(n − 1)A.

Conversely, let us consider a complete manifold (W, g̃) such that, K being a compact set, W\K is diffeomorphic
(by ξ) to one or many copies of the pointed ball of Rn: B = B0(δ)\{0} identified also to BP (δ)\{P }. Let Ω be one of
them. After this study it will be clear that the argument is the same for one end or several ends.

Definition 2. The manifold is asymptotically Euclidean in (Ω, ξ) if:

g̃ − E = O
(
ρ−τ

)
, ∂i g̃jk = O

(
ρ−τ−1), ∂ij g̃kl = O

(
ρ−τ−2), with τ > 0.

Remark 2. According to Bartnik [7], the mass makes sense if and only if τ > (n − 2)/2. This agrees with our result:
the mass is a finite real number if and only if τ = 2 + ω > 2 + (n − 6)/2 = (n − 2)/2.

The usual hypotheses made by the Physicists for defining mass are:

(a) g̃ = (1 + Ãρ2−n)4/(n−2) (E + h̃) with h̃ = O(ρ1−n)

(b) R̃ integrable and non-negative.

This implies ψ̃(ρ) = ∫
∂B(ρ)R̃ dσ̃ = O(ρ−n−1), for otherwise R̃, which is non-negative, would not be integrable.

Expressing R̃ in terms of the derivatives of g̃ on Ω , we find:∫
R̃ dṼ = γ (ρ) − γ (ρo) + O

(
ρα

)
,

B(ρ)\B(ρo)
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with α = n − 2(τ + 1) < 0. It follows that m(g̃) = limρ→∞ γ (ρ) is finite when R̃ is integrable. The hypothesis
h̃ = O(ρ1−n) implies the integrability of R̃.

Let us consider the conformal metric g = ϕ4/(n−2)g̃, with ϕ ∈ C∞ such that �ϕ � 0 on V and �ϕ > 0 on
B(2/δ)\B(1/δ), ϕ = k = Cte for ρ < 1/δ, and with principal part ϕ = 1/(ρn−2 + Ã) for ρ > 2/δ. By means of
the inverse mapping ρ → r = 1/ρ, the metric g on B extends itself on V with ϕ = k outside B . It is of the type
studied in [5]. Indeed R � 0 and R > 0 on B(δ)\B(δ/2) since R̃ � 0, implies that L is invertible.

A point of coordinates (ρ, θ) ∈ Ω , ρ > 1/δ, θ ∈ Sn−1(1), goes through ξ to a point (r, θ) in B (r = 1/ρ < δ). In
the system (r, θ), g = (ξ−1)∗[ϕ4/(n−2)g̃] = E + h, with h = O(rn−1).

This implies ω � n − 3. We have easily 2ω > n − 6. It follows that G = r2−n + A + O(r) with A > 0.
Let us now consider a change of conformal metric as above. Then we get on Ω a metric ĝ = (1 +Aρ2−n)4/(n−2) ×

(E + ĥ), the Green function being Ĝ = 1/(ρn−2 + A) and R̂ ≡ 0. Since by hypothesis R̃ � 0, we must have Ã � A.
Consequently, m = 4(n − 1)Ã � 4(n − 1)A.

Theorem 3. Let (Wn, g̃) be asymptotically Euclidean (n � 3) (not conformal Euclidean) with scalar curvature R̃ � 0
integrable. On each end (Ωi, ξ), we suppose that the metric is of the form g̃(ρ, θ) = (1 + Ãiρ

2−n)(E + hi) with
hi = O(ρ1−n). Then each mass mi satisfies mi � 4(n − 1)Ai > 0, except if g̃ = E .

4. The general case

We saw that, if the dimension n � 6, H(P,Q) has no reason to be bounded, it may have singularities at P .
Let M denote the set of all metrics g̃ on W that are asymptotically Euclidean of order > (n − 2)/2 with invertible

conformal Laplacian. We suppose that there is a metric g̃ ∈ M conformal to the initial metric such that R̃ � 0 outside
Ω and with mean value ψ̃(ρ) integrable on Ω (above we saw that this is necessary in order the mass be finite), and
that

(∗) g̃ = (1 + Ãρ2−n)4/(n−2)(E + h̃) with h̃ = O(ρ−τ ), τ > (n− 2)/2 and with an O(ρ1−n) mean integral on Sn−1(1).

We do the same at each end if there are several ends.
Then we proceed as above. With a change of conformal metric on W , we obtain on V (by extension) a metric g to

which there correspond at P (resp. Pi ), A (resp. Ai ) positive real numbers (except on Sn for which A = 0). Coming
back to W , we obtain a metric in M, namely:

ĝ = G4/(n−2)g = (
1 + Aρ2−n

)4/(n−2)
(E + ĥ) with R̂ = 0 and A > 0.

Moreover, ψ̃ � 0, thus m > 0. Indeed R̃ can be expressed itself in terms of R̂. Integrating this expression, we get
that ψ̃ − ψ is of the same sign as Ã − A (like the end of 3.). Therefore:

m = 4(n − 1)Ã � 4(n − 1)A > 0.

Theorem 4. Let (W, g̃) ∈ M be of the type (∗) (g̃ not conformally Euclidean). Then its mass m is positive. Moreover,
m � 4(n − 1)A, where the real number A > 0 corresponds to h̃ (resp. Ai > 0 at each end).

Remark. This Note is more than an announcement: it contains all the proofs.
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