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Abstract

We present some new results concerning well-posedness of gradient flows generated by λ-convex functionals in a wide class
of metric spaces, including Alexandrov spaces satisfying a lower curvature bound and the corresponding L2-Wasserstein spaces.
Applications to the gradient flow of Entropy functionals in metric-measure spaces with Ricci curvature bounded from below and to
the corresponding diffusion semigroup are also considered. These results have been announced during the workshop on “Optimal
Transport: theory and applications” held in Pisa, November 2006. To cite this article: G. Savaré, C. R. Acad. Sci. Paris, Ser. I 345
(2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Flots gradients dans des espaces métriques à courbure minorée. On présente dans cette Note quelques résultats nouveaux re-
latifs aux flots gradients associés aux fonctionnelles λ-convexes dans une large classe d’espaces métriques, comprenant les espaces
d’Aleksandrov (à courbure minorée) et les espaces correspondants du type L2-Wasserstein. On considère aussi des applications
aux flots gradients de l’entropie dans des espaces métriques mesurés à courbure de Ricci minorée et aux semigroupes de diffusion
correspondants. Ces résultats ont été présentés au Congrés “Optimal Transport: theory and applications”, Pisa, Novembre 2006.
Pour citer cet article : G. Savaré, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let (X,d) be a complete and separable metric space. A (constant speed, minimal) geodesic is a curve x : [0,1] → X

such that d(xs , xt ) = |ẋ| |s − t |, ∀s, t ∈ [0,1], |ẋ| denoting its (constant) metric velocity.

Definition 1 (λ-convexity). A functional φ :X → (−∞,+∞] is λ-convex, λ ∈ R, if every couple of points x0, x1 ∈
D(φ) := {u ∈ X: φ(u) < +∞} can be connected by a geodesic x such that

φ(xt ) � (1 − t)φ(x0) + tφ(x1) − 1
2λt(1 − t)d2(x0, x1) ∀t ∈ [0,1]. (1)
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In contrast with the well known case when X is an Hilbert space [3], in arbitrary metric spaces λ-convexity is
generally not sufficient to obtain the existence of a λ-contracting gradient flow, and it is a common belief that some
‘Riemannian-like’ structure for X should also be required. When X is a non-positively curved (NPC) Alexandrov
space (i.e., the squared distance map u �→ 1

2 d2(u, v) is 1-convex, see e.g. [4]), then a generation result reproducing
the celebrated Crandall–Ligget argument has been proved by [7] and it has been refined in various directions in [1]. In
this note we consider the case of spaces satisfying (in a suitable synthetic way) only a lower bound on the curvature.
Besides Alexandrov spaces (considered by a completely different method in the unpublished [9] and, when X is com-
pact and positively curved, in the recent [8]), our approach covers more general situations, as the Wasserstein space
P2(X), when the Riemannian manifold X has points with negative sectional curvature. In particular our conditions
are preserved by the Wasserstein construction and avoid compactness of the sublevels of φ.

Let us recall the metric definition of gradient flow for a λ-convex functional (see [1, Chap. 4]):

Definition 2 (Gradient flow). Let φ :X → (−∞,+∞] be proper, l.s.c., and λ-convex. The gradient flow of φ with
initial value u0 ∈ D(φ) is a locally Lipschitz curve u : t ∈ (0,+∞) �→ ut ∈ D(φ) such that

d
dt

1
2 d2(ut , v) + λ

2 d2(ut , v) � φ(v) − φ(ut ) for a.e. t ∈ (0,+∞), ∀v ∈ D(φ); lim
t↓0

ut = u0. (2)

The existence of gradient flows will be proved by the so called Minimizing Movements variational scheme.

Definition 3 (The ‘Minimizing Movements’ approximation scheme). A recursive minimizing sequence {Un
τ }n∈N with

step τ > 0 and initial datum U0 ∈ X is any solution of the family of problems

U0
τ := U0, Un

τ ∈ argminV

( 1
2τ

d2(Un−1
τ ,V ) + φ(V )

)
, n = 1,2, . . . . (3)

A discrete solution Uτ : [0,+∞) → X is defined by setting Uτ (t) ≡ Un
τ if t ∈ ((n − 1)τ, nτ ]. The variational scheme

is generically solvable if there exists a minimizing sequence {Un
τ }n∈N for every U0 in a dense subset of D(φ) and for

a vanishing sequence of time steps τ (depending on U0).

Definition 4 (Semi-concavity of the squared distance function). We say that X is a K-SC (Semi-Concave) space, K � 1,
if for every geodesic x and any y ∈ X

d2(xt , y) � (1 − t)d2(x0, y) + td2(x1, y) − K t (1 − t)d2(x0, x1) ∀t ∈ [0,1]. (4)

Examples.

– PC SPACES: X is Positively Curved (PC) in the sense of ALEXANDROV iff it is K-SC with K = 1.
– ALEXANDROV SPACES: if X is an Alexandrov space (in particular a Riemannian manifold) whose curva-

ture is bounded from below by a negative constant −κ and D = diam(X) < +∞, then X is K-SC with
K = D

√
κ/ tanh(D

√
κ).

– PRODUCT AND L2 SPACES: if (Xi,di ) is a (even countable) collection of K-SC spaces, then X := ΠiXi with the
usual product distance is K-SC. If μ is a finite measure on some separable measure space Ω then X := L2

μ(Ω;X)

endowed with the distance d2
X (x, y) := ∫

Ω
d2(x(ω), y(ω))dμ(ω).

– WASSERSTEIN SPACE: P2(X) is the set of all Borel probability measures μ on X with
∫
X

d2(x, x0)dμ < +∞
for some x0 ∈ X, endowed with the L2-Wasserstein distance [11,1]. P2(X) is K-SC iff X is K-SC.

Definition 5 ((Upper) angles). Let x1, x2 be two geodesics emanating from the same initial point x0 := x1
0 = x2

0. Their
upper angle �u(x1, x2) ∈ [0,π] is defined by

cos
(
�u(x

1, x2)
) := lim inf

s,t↓0

d2(x0, x1
s ) + d2(x0, x2

t ) − d2(x1
s , x2

t )

2d(x0, x1
s )d(x0, x2

t )
. (5)

Definition 6 (Local Angle Condition (LAC)). X satisfies the local angle condition (LAC) if for any triple of geodesics
xi , i = 1,2,3, emanating from the same initial point x0 the corresponding angles θij := �u(xi , xj ) ∈ [0,π] satisfy one
of the following equivalent conditions:
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1. θ12 + θ23 + θ31 � 2π .
2. There exists an Hilbert space H and vectors wi ∈ H such that 〈wi,wj 〉H = cos(θ ij ), 1 � i, j � 3.
3. For every choice of ξ1, ξ2, ξ3 � 0 one has

∑3
i,j=1 cos(θ ij )ξiξj � 0.

Examples.

– A BANACH SPACE X satisfies (LAC) iff X is a HILBERT SPACE.
– RIEMANNIAN MANIFOLDS AND ALEXANDROV SPACES with curvature bounded below satisfy (LAC).
– PRODUCT SPACES: X := ΠiXi satisfies (LAC) iff each (Xi,di ) does satisfy it.
– L2 SPACES: The space L2

μ(Ω;X) satisfies (LAC) iff X satisfies it.
– WASSERSTEIN SPACE: The L2-Wasserstein space P2(X) satisfies (LAC) iff X does.
– Let (ei ) be an orthonormal basis of R

4 and let X be the cone {∑4
i=1 xiei : xi � 0} ⊂ R

4 with the dis-
tance d2(x,y) := |x|2 + |y|2 − 2|x| |y| cos( 1

3

√
2π |x/|x| − y/|y||). The geodesics xe

t := te, e ∈ X, t ∈ [0,1],
emanating from the origin satisfy (LAC) since �u(xe, xf ) � 2π/3 but X is not an Alexandrov space since∑4

i,j=1 cos(�u(xei , xej )) = −2 < 0.

2. Main results

Let us recall that the Metric Slope of φ at u ∈ D(φ) is |∂φ|(u) := lim supv→u (φ(u) − φ(v))+/d(u, v).

Theorem 7 (Generation result for gradient flows). Let X be a K-SC space satisfying (LAC) and let φ :X �→
(−∞,+∞] be proper, l.s.c., and λ-convex. If (3) is generically solvable, then

λ-contracting semigroup. For every u0 ∈ D(φ) there exists a unique gradient flow u := S[u0] according to Defini-
tion 2. The map u0 �→ St [u0] is a λ-contracting continuous semigroup on D(φ), i.e.

St+h[u0] = Sh

[
St [u0]

]
, d

(
St [u0], St [v0]

)
� e−λtd(u0, v0) ∀u0, v0 ∈ D(φ). (6)

Uniform error estimate. For every time interval [0, T ] there exists a “universal” constant CK,λ,T (only depending on
K, λ, T ) such that for every discrete solution Uτ , τ ∈ (0, 1

2λ− ),

sup
t∈[0,T ]

d2(ut ,Uτ (t)
)
�

{
CK,λ,T (φ(u0) − infX φ) · √τ if u0 = U0

τ ∈ D(φ),

CK,λ,T |∂φ|2(u0) · τ if u0 = U0
τ ∈ D(|∂φ|). (7)

Regularizing effect. St maps D(φ) into D(|∂φ|) ⊂ D(φ) for every t > 0, t �→ eλt |∂φ|(ut ) is non-increasing,
t �→ φ(ut ) is (locally semi-, if λ < 0) convex, and, when λ � 0,

φ(ut ) � φ(v) + 1
2t

d2(u0, v), |∂φ|2(ut ) � |∂φ|2(v) + 1
t2 d2(u0, v) ∀v ∈ X. (8)

Energy identity. The right limits |u̇t+| := limh↓0
d(ut ,ut+h)

h
and d

dt+ φ(ut ) := limh↓0
φ(ut+h)−φ(ut )

h
exist for every t � 0,

are finite if t > 0, and coincide with the corresponding left ones for t ∈ (0,+∞) \ C, C being at most count-
able. They satisfy the differential energy identity

d
dt+ φ(ut ) = −|u̇t+|2 = −|∂φ|2(ut ) ∀t � 0. (9)

Asymptotic behavior. If λ > 0, then φ admits a unique minimum point ū and for t � t0 � 0 we have

λ
2 d2(ut , ū) � φ(ut ) − φ(ū) � 1

2λ
|∂φ|2(ut ), d2(ut , ū) � d2(ut0 , ū)e−λ(t−t0), (10a)

φ(ut ) − φ(ū) �
(
φ(ut0) − φ(ū)

)
e−2λ(t−t0), |∂φ|(ut ) � |∂φ|(ut0)e

−λ(t−t0). (10b)

2.1. Applications to metric-measure spaces

Let (X,d, γ ) be a metric-measure space with γ ∈ P(X). On the Wasserstein space X = P2(X) we consider the
Relative Entropy functional φ(μ) = Ent(μ|γ ) := ∫

X
ρ logρ dγ if μ = ρ · γ  γ, φ(μ) := +∞ otherwise. According

to [10,6], X satisfies the lower Ricci curvature bound Curv(X,d, γ ) � λ iff the functional φ = Ent(·|γ ) is λ-convex
in P2(X). X is non-branching if two geodesics x, y with x0 = y0 and xt̄ = yt̄ for some t̄ ∈ (0,1) must coincide.
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Theorem 8 (Markov semigroup and diffusion kernels). Let us suppose that X is K-SC, satisfies (LAC) and
Curv(X,d, γ ) � λ. There exists a unique λ-contracting gradient flow St generated by φ = Ent(·|γ ) on Xγ := {μ ∈
P2(X): suppμ ⊂ suppγ } as a limit of the (always solvable) Minimizing Movement scheme. St enjoys all the proper-
ties stated in Theorem 7 and, if X is non-branching, it satisfies the linearity condition

St [αμ0 + βμ1] = αSt [μ0] + βSt [μ1] ∀μ0,μ1 ∈ Xγ , α,β � 0, α + β = 1. (11)

γ is an invariant measure and the kernels νx,t := St [δx]  γ satisfy the Chapman–Kolmogorov equation

νx,t+s(E) =
∫
X

νy,t (E)dνx,s(y) ∀E ∈ B(X), x ∈ suppγ, t, s > 0; St [μ] =
∫
X

νx,t dμ(x). (12)

St can be uniquely extended to a Markov (i.e. linear, order preserving, strongly (or weakly*, if p = +∞) continuous,
contraction) semigroup St in Lp(γ ) such that St [ρ0]γ = St [ρ0γ ] for every ρ0 ∈ Lp(γ ) with ρ0γ ∈ P2(X).

Remark 9. When X = R
d = suppγ, there exists a λ-convex potential V : R

d → R such that γ = e−VLd and the
gradient flow μt = utLd generated by Ent(·|γ ) satisfies the Fokker–Planck equation [5,2]

∂tut − ∇ · (∇ut + ut∇V ) = 0 in R
d × (0,+∞). (13)

2.2. Stability of gradient flows

Let now consider a sequence (Xk,dk, γ k), γ k ∈ P2(X
k), of metric measure spaces converging to (X,d, γ ) in

the measured Gromov–Hausdorff distance. That means [10,6] that a sequence of (separable and complete) coupling
semidistances d̂k on the disjoint union Xk � X exists s.t.

lim
k→+∞ d̂k

W (γ k, γ ) = 0, d̂k
W being the L2-Wasserstein distance in P2(X

k � X) induced by d̂k. (14)

A sequence μk ∈ P2(X
k) converges to μ ∈ P2(X) if limk→+∞ d̂k

W (μk,μ) = 0.

Theorem 10. Let us assume that each metric space Xk is K-SC, it satisfies (LAC) and the lower Ricci bound
Curv(Xk,dk, γ k) � λ for suitable constants λ,K independent of k. If μk

0 ∈ P2(X
k) is a sequence converging

to μ0 ∈ P2(X) with equibounded relative entropy supk Ent(μk|γ k) < +∞, then for every t � 0 the solution
μk

t := Sk
t [μk

0] of the ‘Entropy gradient flow’ given by Theorem 8 converges to the measure μt = St [μ0] ∈ P2(X)

which is the (unique) Entropy gradient flow in P2(X) with initial datum μ0.
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