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Abstract

In this Note, sharp sufficient conditions for the existence of periodic solutions of a nonautonomous discrete time semi-ratio-
dependent predator–prey system with functional responses are derived. In our results this system with any monotone functional
response bounded by polynomials in R

+, always has at least one ω-periodic solution. In particular, this system with the most
popular functional responses Michaelis–Menten, Holling type-II and III, sigmoidal, Ivlev and some other monotone response
functions, always has at least one ω-periodic solution. To cite this article: M. Fazly, M. Hesaaraki, C. R. Acad. Sci. Paris, Ser. I
345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Solutions périodiques d’un système discret prédateur–proie du temps avec des réponses fonctionnelles monotones. Dans
cette Note, on donne de nouvelles conditions suffisantes d’existence d’une solution périodique d’un système discret non autonome
prédateur–proie, dépendant du temps avec condition semi-finale et pour différentes réponses fonctionnelles. Dans les résultats obte-
nus, pour des réponses fonctionnelles monotones majorées par des polynômes sur R

+, le système a toujours au moins une solution
ω-périodique. En particulier, pour les réponses fonctionnelles les plus utilisées – Michaelis–Menten, type-II et III de Holling, sig-
moïde, Ivlev et d’autres fonctions monotones – le système a toujours une solution ω-périodique. Pour citer cet article : M. Fazly,
M. Hesaaraki, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the past decades, many authors have studied the existence of periodic solutions for the differential and difference
equations, [1–3,6]. In particular, the existence of periodic solutions of the following semi-ratio-dependent predator–
prey system with some monotone functional responses has been studied extensively in the literature [1,4,6],⎧⎨

⎩
ẋ1(t) = (

a(t) − b(t)x1
)
x1 − p(t, x1)x2,

ẋ2(t) =
(

c(t) − d(t)
x2

x1

)
x2.

(1)
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It is well known that discrete time systems are more appropriate than continuous ones when the populations have
nonoverlapping generations. In addition, discrete time models can also provide efficient computational systems of
continuous for numerical simulations.

In this work, we shall study the existence of periodic solutions for the following nonautonomous discrete time
system analogue of system (1) that is studied by Fan and Wang in [2], Bohner et al. in [1] and in other literature,{

x1(k + 1) = x1(k) exp
(
a(k) − b(k)x1(k) − p

(
k, x1(k)

)
x2(k)/x1(k)

)
,

x2(k + 1) = x2(k) exp
(
c(k) − d(k)x2(k)/x1(k)

)
,

(2)

where a, c : Z → R and ā, c̄ > 0, also b, d : Z → R
+ are ω-periodic sequences of real and k ∈ Z.

The most popular prey-dependent monotone functional responses which are studied extensively by authors are
p1(k, x) = m(k)x, that appeared in the classical Lotka–Volterra model, p2(k, x) = m(k)x/(A(k) + x) was proposed
by Michaelis and Menten in the context of studying enzymatic reactions. Later, such a model was also used by
Holling, now, popularly referred to as a Holling type-II response function. Another type, known as the Holling type-III
functional response, takes the form p3(k, x) = m(k)x2/(A(k) + x2) and in general case, p4(k, x) = m(k)xn/(A(k) +
xn), n > 2, is known as the sigmoidal response function. Similar types of celebrated response functions can be found in
Freedman [4], e.g. p5(k, x) = m(k)x2/((A(k)+x)(B(k)+x)) and p6(k, x) = m(k)(1−e−A(k)x) which was proposed
by Ivlev. Throughout this Note, we assume that A,B and m are ω-periodic sequences of positive real numbers.

In this Note, using a new estimation technique and a continuation theorem from Gaines and Mawhin, we show
that system (2) with all of the monotone functional responses bounded by polynomials in R

+, always has at least one
ω-periodic solution. In particular, system (2) with the most popular monotone functional responses p1, called Leslie–
Gower system, p2, called Holling–Tanner system, p3, p4, p5 and p6 always has at least one ω-periodic solution. Our
results extend previous works presented in [1,2] and [6].

2. Existence of positive periodic solutions

In this section we shall prove a theorem related to system (2). By this theorem, we get sharp sufficient conditions
for the existence of periodic solutions of system (2) with the monotone functional responses.

For convenience, we use the following notations in our proofs:

Iω = {0,1, . . . ,ω − 1}, gu = max
k∈Iω

g(k), gl = min
k∈Iω

g(k), ḡ = 1/ω
∑

g(s),
∑

g(s) =
∑
s∈Iω

g(s),

for {g(k)}k∈Z an ω-periodic sequence of real numbers.
Obviously, for k1 ∈ Iω, k ∈ Z

+ and ω-periodic function f : Z → R we have the following inequalities:

f (k) � f (k1) +
∑∣∣f (s + 1) − f (s)

∣∣ and f (k) � f (k1) −
∑∣∣f (s + 1) − f (s)

∣∣. (3)

Theorem 1. Assume that in system (2) the following conditions hold:

(i) The response function p : Z × R
+ → R

+ is ω-periodic with respect to the first variable and is differentiable with
respect to the second variable, also p(k,0) = 0 and ∂p

∂x
(k, x) > 0, for all k ∈ Z, x ∈ R

+.
(ii) There exist m ∈ Z

+ and ω-periodic functions ai : Z → R
+ ∪{0}, i = 0, . . . ,m−1, such that p(k, x) � a0(k)xm +

· · · + am−1(k)x, for all k ∈ Z and x ∈ R
+.

Then this system has at least one positive ω-periodic solution.

Proof. First, let xi(k) = exp(ui(k)), i = 1,2, and k ∈ Z
+. Using this change of variables, system (2) reduces to the

following system:{
u1(k + 1) − u1(k) = a(k) − b(k) exp

(
u1(k)

) − p
(
k, exp

(
u1(k)

))
exp

(
u2(k) − u1(k)

)
,

u2(k + 1) − u2(k) = c(k) − d(k) exp
(
u2(k) − u1(k)

)
.

(4)

Here we would like to apply a continuation theorem from Gaines and Mawhin in [5, p. 40]; to do this, let

X = Y = {
u = {

u(k)
} ∣∣ u(k) ∈ R

2, u(k + ω) = u(k), k ∈ Z
+}

and ‖u‖ =
∑

max
k∈Iω

∣∣ui(k)
∣∣, u ∈ X.
i=1,2



M. Fazly, M. Hesaaraki / C. R. Acad. Sci. Paris, Ser. I 345 (2007) 199–202 201
Then X and Y with the above norm ‖·‖, are Banach spaces. For u ∈ X and k ∈ Z
+, we define: (Lu)(k) as the left-hand

side of system (4), (Nu)(k) as the right-hand side of system (4) and Pu = Qu = ū.
It is not difficult to show that dim KerL = 2 = codim ImL. Since ImL is closed in Y thus L is a Fredholm

mapping of index zero. It is easy to show that P and Q are continuous projections and ImP = KerL, ImL = KerQ =
Im(I − Q). By the Arzela–Ascoli theorem, it can be shown that N is L-compact on Ω for every open bounded set,
Ω ⊂ X. Now we are in the position to search for an appropriate open bounded subset Ω for the application of
Gaines–Mawhin’s continuation theorem in [5, p. 40]. Suppose that u = (u1, u2) ∈ X is a solution of the operator
equation Lu = λNu, for a certain λ ∈ (0,1). By summing on two sides of this operator equation over the set Iω, we
obtain:

āω =
∑[

p(k, exp(u1(k)))

exp(u1(k))
exp

(
u2(k)

) + b(k) exp
(
u1(k)

)]
and c̄ω =

∑[
d(k)

exp(u2(k))

exp(u1(k))

]
. (5)

It follows from the operator equation Lu = λNu and (5),∑∣∣u1(k + 1) − u1(k)
∣∣ <

(
ā + |a|)ω and

∑∣∣u2(k + 1) − u2(k)
∣∣ <

(
c̄ + |c|)ω. (6)

Since u = (u1, u2) ∈ X, there exist ξi, ηi ∈ Iω, i = 1,2, such that

ui(ξi) = ul
i and ui(ηi) = uu

i . (7)

From (5) and (7) we obtain, āω �
∑

b(k) exp(u1(ξ1)) = b̄ω exp(u1(ξ1)). From this inequality, (6) and (3), for all
k ∈ Z

+ it follows

u1(k) � u1(ξ1) +
∑∣∣u1(s + 1) − u1(s)

∣∣ � ln(ā/b̄) + (
ā + |a|)ω := M1. (8)

From (5) and (7) we have

c̄ω =
∑[

d(k)exp
(
u2(k)

)
/exp

(
u1(k)

)]
� d̄ ω exp

(
u2(ξ2)

)
/exp

(
u1(η1)

)
, (9)

then using (8) we also have, u2(ξ2) � ln(c̄/d̄) + u1(η1) � ln(c̄/d̄) + M1. Again from this, (3) and (6), for all k ∈ Z
+,

we get

u2(k) � u2(ξ2) +
∑∣∣u2(s + 1) − u2(s)

∣∣ � ln(c̄/d̄) + M1 + (
c̄ + |c|)ω := M2. (10)

It follows from (5) and (7) and assumption (ii) that

ā � b̄ exp
(
u1(η1)

) + (
ā0 exp

(
u1(η1)

)m−1 + · · · + ām−2 exp
(
u1(η1)

) + ām−1
)

exp
(
u2(η2)

)
. (11)

In order to obtain M3 and M4 such that u1(k) � M3 and u2(k) � M4, for all k ∈ Z
+, we consider two cases.

Case 1: If exp(u1(η1)) � exp(u2(η2)) then it follows from (3), (6), (8) and (11), for all k ∈ Z
+, that

u2(k) � ln
(
ā/

(
b̄ + ām−1 + ām−2 exp(M1) + · · · + ā0 exp(M1)

m−1)) − (c̄ + |c|)ω := M1
4 . (12)

From this, (9) and (12) we get u1(η1) � M1
4 − ln(c̄/d̄), from this and (3), for all k ∈ Z

+ we obtain

u1(k) � u1(η1) −
∑∣∣u1(s + 1) − u1(s)

∣∣ � M1
4 − ln(c̄/d̄) − (

ā + |a|)ω := M1
3 . (13)

Case 2: If exp(u1(η1)) > exp(u2(η2)) then it follows from (11) that

ā � (b̄ + ām−1) exp
(
u1(η1)

) + ām−2 exp
(
u1(η1)

)2 + · · · + ā0 exp
(
u1(η1)

)m
. (14)

Now, consider the function g : R+ → R with g(x) = b0x
m +b1x

m−1 +· · ·+bm−1x −bm such that bi, i = 0, . . . ,m−2
are nonnegative and bm−1, bm are positive real numbers and m ∈ Z

+. Obviously, the function g is increasing and
g(0) = −bm < 0, so g has a unique root x∗ in R

+. Then for x ∈ R
+ and g(x) � 0, we have x � x∗. Hence it follows

from (14) that exp(u1(η1)) � x∗, where x∗ only depends on ā, b̄,m and āi , i = 0, . . . ,m − 1. From this, (6) and (3),
for all k ∈ Z

+ we obtain

u1(k) � u1(η1) −
∑∣∣u1(s + 1) − u1(s)

∣∣ � ln(x∗) − (
ā + |a|)ω := M2

3 . (15)

From (5) and (7) we have, c̄ω = ∑ [d(k) exp(u2(k))/ exp(u1(k))] � exp(u2(η2))/ exp(u1(ξ1)) d̄ω.
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It follows from this and (15) that u2(η2) � ln(c̄/d̄) + M2
3 . From this, (6) and (3), for all k ∈ Z

+, we obtain:

u2(k) � u2(η2) −
∑∣∣u2(s + 1) − u2(s)

∣∣ � ln(c̄/d̄) + M2
3 − (

c̄ + |c|)ω := M2
4 . (16)

Now we take M3 := min{M1
3 ,M2

3 } and M4 := min{M1
4 ,M2

4 }. Then for all k ∈ Z
+, it follows from (12), (13), (15) and

(16) that u1(k) � M3 and u2(k) � M4. Hence from this, (8) and (10) we have maxk∈Iω |u1(k)| � max{|M1|, |M3|} :=
R1 and maxk∈Iω |u2(k)| � max{|M2|, |M4|} := R2. Clearly R1 and R2 do not depend on λ. In order to define Ω and
to show that QN(u) �= 0 for u ∈ ∂Ω ∩ KerL, we prove that the following algebraic equations have a unique solution
in R

2+;

ā − b̄x1 − x2p̄(x1)/x1 = 0, c̄ − d̄x2/x1 = 0, (17)

where p̄(x1) = 1/ω
∑ω−1

k=0 p(k, x1). From the assumptions upon a, b, c, d and p, it follows that the reduced equation
in x1, i.e. ā − b̄x1 − p̄(x1)c̄/d̄ = 0 has a unique solution x∗

1 in R
+. So, (17) has the unique solution (x∗

1 , x∗
2 ) with

x∗
1 > 0, x∗

2 > 0. In fact, we can choose R > R1 + R2 sufficiently large such that ‖(ln(x∗
1 ), ln(x∗

2 ))‖ = | ln(x∗
1 )| +

| ln(x∗
2 )| < R.

Now we take Ω := {u ∈ X | ‖u‖ < R}. This satisfies the first condition of the Gaines–Mawhin’s continuation
theorem. Let u ∈ ∂Ω ∩ KerL = ∂Ω ∩ R

2, then u is a constant vector in R
2 with

∑2
1 |ui | = R. Hence, from (17) and

the definition of R, we see that QN(u) �= 0.
Finally, by direct calculation and from the assumptions upon b, c and p, and also since x∗

1 , x∗
2 > 0, we have:

deg(JQN,Ω ∩ KerL,0) = sgn

{
c̄

(
b̄x∗

1 + ∂p̄

∂x1
(x∗

1 ) x∗
2

)}
> 0,

where deg(·, ·, ·) is the Brouwer degree and the isomorphism J can be chosen to be the identity mapping, since
ImQ = KerL. Hence the second condition of the Gaines–Mawhin’s continuation theorem holds, too. Thus system (4)
has at least one ω-periodic solution u∗ = {(u∗

1(k), u∗
2(k))}k∈Z+ , we see that x∗ = {(exp(u∗

1(k)), exp(u∗
2(k)))}k∈Z+ is a

positive ω-periodic solution of system (2). �
Remark 1. The interesting point is that for the functional responses p1, . . . , p6 and some more popular functional
responses that are used by some authors, the assumptions of Theorem 1 hold. In fact, if n is the number in p4 and if
m = n,a0 = an−2 = m/A,an−1 = m(1 + A + 1/A + 1/(A + B)) and a1 = · · · = an−3 = 0 in (ii), then we see that the
system (2) with p1, . . . , p5 and p6 satisfies the assumptions of Theorem 1.

Remark 2. For the existence of periodic solutions of system (2) with p1,p2,p5 and p6, Fan and Wang in [2] and
Bohner et al. in [1] get Theorem 2.1 in [2] and Theorem 3.4 in [1]. In fact, Theorem 1 implies these theorems without
using the exponential condition p̄0c̄ exp((ā + |a| + c̄ + |c|)ω) < b̄d̄ which is used by them in [1] and [2]. Also, for
system (2) with p2, . . . , p5 and p6, they have used the condition dlā > pu

1 c̄, in Theorem 2.2 in [2] and Theorem 3.5
in [1], as we see in Theorem 1 this condition is not necessary.

Remark 3. By a similar discussion as in the proof of Theorem 1, one can get the same results for the continuous
time system (1) with the monotone functional responses, which extend and improve some previous results presented
in [1,6] and in other literature.
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