

Available online at www.sciencedirect.com



COMPTES RENDUS MATHEMATIQUE

C. R. Acad. Sci. Paris, Ser. I 345 (2007) 325-328

http://france.elsevier.com/direct/CRASS1/

Algebraic Geometry

# A cohomological criterion for semistable parabolic vector bundles on a curve

Indranil Biswas

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

Received 2 May 2007; accepted after revision 17 July 2007

Available online 21 August 2007

Presented by Jean-Michel Bismut

### Abstract

Let X be an irreducible smooth complex projective curve and  $S \subset X$  a finite subset. Fix a positive integer N. We consider all the parabolic vector bundles over X whose parabolic points are contained in S and all the parabolic weights are integral multiples on 1/N. We construct a parabolic vector bundle  $V_*$ , of this type, satisfying the following condition: a parabolic vector bundle  $E_*$ of this type is parabolic semistable if and only if there is a parabolic vector bundle  $F_*$ , also of this type, such that the underlying vector bundle  $(E_* \otimes F_* \otimes V_*)_0$  for the parabolic tensor product  $E_* \otimes F_* \otimes V_*$  is cohomologically trivial, which means that  $H^i(X, (E_* \otimes F_* \otimes V_*)_0) = 0$  for all *i*. Given any parabolic semistable vector bundle  $E_*$ , the existence of such  $F_*$  is proved using a criterion of Faltings which says that a vector bundle *E* over X is semistable if and only if there is another vector bundle *F* such that  $E \otimes F$  is cohomologically trivial. *To cite this article: I. Biswas, C. R. Acad. Sci. Paris, Ser. I 345 (2007).* © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

#### Résumé

Un critère cohomologique pour des fibrés vectoriels paraboliques semistables sur une courbe. Soit X une courbe complexe lisse projective irréductible et  $S \subset X$  une partie finie. Fixons un entier positif N. Nous considerons les fibrés vectoriels paraboliques sur X dont les points paraboliques sont contenus dans S et les poids paraboliques sont des multiples entiers de 1/N. Nous construisons un tel fibré vectoriel parabolique  $V_*$ , vérifiant la condition suivante : un fibré vectoriel parabolique  $E_*$  du type comme ci-dessus est semistable au sens parabolique si et seulement s'il existe un fibré vectoriel parabolique  $F_*$ , aussi de tel type, tel que le fibré vectoriel sous-jacent ( $E_* \otimes F_* \otimes V_*$ )<sub>0</sub> au produit tensoriel parabolique  $E_* \otimes F_* \otimes V_*$  soit cohomologiquement trivial : on a  $H^i(X, (E_* \otimes F_* \otimes V_*)_0) = 0$  pour i = 0, 1. L'existence d'un tel  $F_*$  est démontrée en utilisant un critère de Faltings qui dit qu'un fibré vectoriel E sur X est semistable si et seulement s'il existe un fibré vectoriel F tel que  $H^i(X, E \otimes F) = 0$  pour i = 0, 1. *Pour citer cet article : I. Biswas, C. R. Acad. Sci. Paris, Ser. I 345 (2007).* 

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

# 1. A parabolic vector bundle

Let *X* be an irreducible smooth projective curve defined over  $\mathbb{C}$ . Fix a finite subset

$$S = \{p_1, \ldots, p_n\} \subset X.$$

1631-073X/\$ – see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2007.07.004

(1)

E-mail address: indranil@math.tifr.res.in.

Also fix a positive integer N. We will consider parabolic vector bundles  $E_*$  over X satisfying the following two conditions:

- (1) the parabolic points of  $E_*$  are contained in the subset S in (1), and
- (2) all the parabolic weights of  $E_*$  are integral multiples on 1/N.

(See [5, Section 1] for parabolic bundles.)

There is an algebraic Galois covering

$$f: Y \longrightarrow X$$

satisfying the following conditions:

- the subset of X over which f is ramified contains S, and
- for each points  $p_i \in S$ ,

$$f^{-1}(p_i) = N \cdot f^{-1}(p_i)_{\text{red}},$$
(3)

where  $f^{-1}(p_i)_{red}$  is the reduced inverse image.

(See [6, p. 26, Proposition 1.2.12] for the existence of such a covering f.)

Let

 $\Gamma := \operatorname{Gal}(f)$ 

be the Galois group for the covering f. A  $\Gamma$ -linearized vector bundle on Y is an algebraic vector bundle E over Y equipped with a lift of the action of  $\Gamma$  as vector bundle automorphisms; this means that the group  $\Gamma$  acts on the total space of E as algebraic automorphisms, and the action of each  $\gamma \in \Gamma$  on E is a vector bundle isomorphism of E with  $(\gamma^{-1})^* E$ .

There is a natural bijective correspondence between the parabolic vector bundles over X of the type mentioned earlier, and the  $\Gamma$ -linearized vector bundles E on Y satisfying the following condition: for each point  $z \in f^{-1}(X \setminus S)$ , the action on the fiber  $E_z$  of the isotropy subgroup for z (for the action of  $\Gamma$  on E) is trivial. See [2] for the details of this bijective correspondence.

Tensor product and direct sum of two parabolic vector bundles can be defined. Similarly, the dual of a parabolic vector bundle is also defined; see [7,3,1]. The earlier mentioned class of parabolic vector bundles is closed under these operations. Furthermore, the above mentioned bijective correspondence between parabolic vector bundles on X and  $\Gamma$ -linearized vector bundles on Y transports the operations of taking tensor product, direct sum and dual of parabolic vector bundles to the operations of taking tensor product, direct sum and dual respectively of  $\Gamma$ -linearized vector bundles. A parabolic vector bundle over X is parabolic semistable if and only if the corresponding  $\Gamma$ -linearized vector bundle on Y is semistable in the usual sense; see [2, p. 318, Lemma 3.13] and [2, p. 308, Lemma 2.7].

A natural parabolic structure on the direct image

$$V = f_* \mathcal{O}_Y \tag{4}$$

on X will be described. For any integer  $j \in [1, N]$ , let

$$V_j := f_* \mathcal{O}_Y \left( -(N-j) f^{-1}(S)_{\text{red}} \right)$$

be the direct image on X, where N is the integer in (3) and  $f^{-1}(S)_{red}$  is the reduced inverse image of S. Consider the filtration of coherent subsheaves of V

$$V_1 \subset \cdots \subset V_i \subset \cdots \subset V_{N-1} \subset V_N = V_N$$

The restriction of this filtration to a point  $p_i \in S$  gives a filtration of subspaces

$$0 \subset V_{p_i}^1 \subset \dots \subset V_{p_i}^j \subset V_{p_i}^{j+1} \subset \dots \subset V_{p_i}^{N-1} \subset V_{p_i}^N = V_{p_i}$$

$$\tag{5}$$

of the fiber  $V_{p_i}$ ; so the subspace  $V_{p_i}^j \subset V_{p_i}$  is the image of the fiber  $(V_j)_{p_i}$  in  $V_{p_i}$ . The dimension of each successive quotient in (5) is  $(\#\Gamma)/N$ . The parabolic structure on V is defined as follows: The quasiparabolic filtration on each  $p_i \in S$  is the one in (5), and the parabolic weight of the subspace  $V_{p_i}^j \subset V_{p_i}$  in (5) is (N - j)/N.

(2)

Let  $V_*$  denote the parabolic vector bundle defined by the above parabolic structure on the vector bundle V in (4). We will construct a  $\Gamma$ -linearized vector bundle associated to a parabolic vector bundle related to  $V_*$ .

Let  $\mathbb{C}(\Gamma)$  denote the group algebra for  $\Gamma$  defined by the formal sums of the form  $\sum_{\gamma \in \Gamma} c_{\gamma} \gamma$  with  $c_{\gamma} \in \mathbb{C}$ . Let

$$\widehat{V} := \mathcal{O}_Y \otimes_{\mathbb{C}} \mathbb{C}(\Gamma) \tag{6}$$

be the trivial vector bundle on *Y*. The natural action of  $\Gamma$  on  $\mathbb{C}(\Gamma)$  and the diagonal action of  $\Gamma$  on  $\mathcal{O}_Y = Y \times \mathbb{C}$ , with  $\Gamma$  acting trivially on  $\mathbb{C}$ , together define a  $\Gamma$ -linearization on the vector bundle  $\widehat{V}$  in (6).

Let  $V'_*$  be the parabolic vector bundle on X given by the above  $\Gamma$ -linearized vector bundle  $\hat{V}$ ; see [2, Section 2c]. The above defined parabolic vector bundle  $V_*$  is obtained from  $V'_*$  by simply forgetting all the parabolic structures on the complement  $X \setminus S$ , keeping the underlying vector bundle unchanged. (Note that since f may be ramified over points outside S, the parabolic vector bundle  $V'_*$  may have nontrivial parabolic structures outside S.)

### 2. Criterion for semistability

All parabolic vector bundles will be assumed to satisfy the two conditions stated at the beginning of Section 1.

**Theorem 2.1.** A parabolic vector bundle  $E_*$  over X is parabolic semistable if and only if there is a parabolic vector bundle  $F_*$  such that the vector bundle  $(E_* \otimes F_* \otimes V_*)_0$  on X underlying the parabolic tensor product  $E_* \otimes F_* \otimes V_*$ , where  $V_*$  is constructed in Section 1, satisfies the following condition:

$$H^{\prime}\left(X, \left(E_{*}\otimes F_{*}\otimes V_{*}\right)_{0}\right) = 0\tag{7}$$

for all i.

**Proof.** Let  $E_*$  be a parabolic vector bundle over X. First assume that there is a parabolic vector bundle  $F_*$  such that (7) holds for all *i*.

Let  $\widehat{E}$  (respectively,  $\widehat{F}$ ) be the unique  $\Gamma$ -linearized vector bundle over the curve Y in (2) corresponding to the parabolic vector bundle  $E_*$  (respectively,  $F_*$ ).

We note that if  $\widehat{E}'$  is the  $\Gamma$ -linearized vector bundle over Y corresponding to a parabolic vector bundle  $E'_*$  on X, then

$$H^{i}(Y,\widehat{E}')^{\Gamma} = H^{i}(X,E')$$
(8)

for all *i*, where E' is the vector bundle underlying  $E'_*$ . Indeed, this follows immediately from the fact that  $E' = (f_* \widehat{E}')^{\Gamma}$  [2, p. 310, (2.9)]. Using (8), and the fact that the correspondence between parabolic vector bundles and  $\Gamma$ -linearized vector bundles is compatible with the tensor product operation, it follows from (7) that

$$H^{i}(Y,\widehat{E}\otimes\widehat{F}\otimes\widehat{V})^{\Gamma} = 0 \tag{9}$$

for all *i*, where  $\widehat{V}$  is the vector bundle in (6). Note that since the parabolic vector bundle  $V_*$  is obtained from the parabolic vector bundle  $V'_*$  associated to the  $\Gamma$ -linearized vector bundle  $\widehat{V}$  by forgetting the parabolic structure on  $X \setminus S$  keeping the underlying vector bundle unchanged, and both  $E_*$  and  $F_*$  do not have any parabolic points outside *S*, the vector bundle underlying the parabolic tensor product  $E_* \otimes F_* \otimes V'_*$  is actually identified with the vector bundle  $(E_* \otimes F_* \otimes V_*)_0$  underlying the parabolic vector bundle  $E_* \otimes F_* \otimes V_*$ .

From the definition of  $\widehat{V}$  in (6) it follows that

$$H^{i}(Y,\widehat{E}\otimes\widehat{F}) = \left(H^{i}(Y,\widehat{E}\otimes\widehat{F})\otimes_{\mathbb{C}}\mathbb{C}(\Gamma)\right)^{\Gamma} = H^{i}(Y,\widehat{E}\otimes\widehat{F}\otimes\widehat{V})^{\Gamma}.$$
(10)

We note that given any finite dimensional complex left  $\Gamma$ -module M, there is a canonical  $\mathbb{C}$ -linear isomorphism

$$M \to (M \otimes_{\mathbb{C}} \mathbb{C}(\Gamma))^{1}$$

defined by  $v \mapsto \sum_{\gamma \in \Gamma} (\gamma \cdot v) \otimes \gamma$ . The left isomorphism in (10) is constructed using this  $\mathbb{C}$ -linear identification. Combining (9) and (10) we have

$$H^{i}(Y,\widehat{E}\otimes\widehat{F}) = 0 \tag{11}$$

for all *i*. From this it can be deduced that the vector bundle  $\widehat{E}$  is semistable. Indeed, using Riemann–Roch and (11) it follows that  $\mu(\widehat{E} \otimes \widehat{F}) = \text{genus}(Y) - 1$  (here  $\mu(W') = \text{degree}(W')/\text{rank}(W')$  for a vector bundle W'). Therefore, using Riemann–Roch, for any subbundle  $W \subset \widehat{E}$ , with  $\mu(W) > \mu(\widehat{E})$ , we have  $\chi(W \otimes \widehat{F}) > 0$ . Hence for such a subbundle we have  $0 < \dim H^0(Y, W \otimes \widehat{F}) \leq \dim H^0(Y, \widehat{E} \otimes \widehat{F})$ , which contradicts (11). Hence  $\widehat{E}$  is a semistable vector bundle.

Since  $\widehat{E}$  is semistable, from [2, p. 318, Lemma 3.13] it follows that the parabolic vector bundle  $E_*$  is parabolic semistable.

To prove the converse, assume that  $E_*$  is parabolic semistable. Therefore, the corresponding  $\Gamma$ -linearized vector bundle  $\hat{E}$  on Y is semistable; see [2, p. 318, Lemma 3.13] and [2, p. 308, Lemma 2.7]. Since  $\hat{E}$  is a semistable vector bundle, a criterion due to Faltings says that there is a vector bundle F on Y such that

$$H^{i}(Y,\widehat{E}\otimes F) = 0 \tag{12}$$

for all *i*; see [4, p. 514, Theorem 1.2] and [4, p. 516, Remark]. Set

$$\widetilde{F} := \bigoplus_{\gamma \in \Gamma} \gamma^* F.$$

Using the  $\Gamma$ -linearization of  $\widehat{E}$  we have  $\gamma^* \widehat{E} = \widehat{E}$  for all  $\gamma \in \Gamma$ . Hence from (12) it follows that dim  $H^i(Y, \widehat{E} \otimes \widetilde{F}) = (\#\Gamma) \cdot \dim H^i(Y, \widehat{E} \otimes F) = 0$  for all *i*. Therefore,

$$H^{i}(Y,\widehat{E}\otimes\widetilde{F}\otimes\widehat{V}) = H^{i}(Y,\widehat{E}\otimes\widetilde{F})\otimes_{\mathbb{C}}\mathbb{C}(\Gamma) = 0$$
(13)

for all *i*, where  $\widehat{V}$  is constructed in (6).

The vector bundle  $\widetilde{F}$  has a natural  $\Gamma$ -linearization. Let  $F'_*$  be the corresponding parabolic vector bundle on X. Let  $F_*$  be the parabolic vector bundle obtained from  $F'_*$  by forgetting its parabolic structure over  $X \setminus S$  and keeping the underlying vector bundle unchanged. Since  $E_*$  and  $V_*$  do not have any parabolic points outside S, the vector bundle underlying the parabolic tensor product  $E_* \otimes F'_* \otimes V_*$  is identified with that of  $E_* \otimes F_* \otimes V_*$ . Now from (8) and (13) we have  $H^i(X, (E_* \otimes F_* \otimes V_*)_0) = 0$  for all i, where  $(E_* \otimes F_* \otimes V_*)_0$  is the vector bundle underlying the parabolic tensor product  $E_* \otimes F_* \otimes V_*$ . This completes the proof of the theorem.  $\Box$ 

# References

- V. Balaji, I. Biswas, D.S. Nagaraj, Principal bundles over projective manifolds with parabolic structure over a divisor, Tohoku Math. J. 53 (2001) 337–367.
- [2] I. Biswas, Parabolic bundles as orbifold bundles, Duke Math. J. 88 (1997) 305-325.
- [3] I. Biswas, Parabolic ample bundles, Math. Ann. 307 (1997) 511-529.
- [4] G. Faltings, Stable G-bundles and projective connections, J. Algebraic Geom. 2 (1993) 507-568.
- [5] V.B. Mehta, C.S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980) 205–239.
- [6] M. Namba, Branched Coverings and Algebraic Functions, Pitman Research Notes in Mathematics, vol. 161, Longman Scientific & Technical House, 1987.
- [7] K. Yokogawa, Infinitesimal deformations of parabolic Higgs sheaves, Int. J. Math. 6 (1995) 125-148.