Interpolation by functions with small spectra

Alexander Olevskii ${ }^{\text {a }}$, Alexander Ulanovskii ${ }^{\text {b }}$
a School of Mathematics, Tel Aviv University, Ramat Aviv, 69978 Israel
b Stavanger University, N-4036 Stavanger, Norway
Received 29 June 2007; accepted 18 July 2007

Available online 21 August 2007
Presented by Jean-Pierre Kahane

Abstract

We show that if Λ is a 'generic' separated sequence of reals, then there is an unbounded set S of arbitrary small measure (union of some neighborhoods of integers) such that every function on Λ with certain decay condition, can be interpolated by an L^{2}-function with the spectrum on S (Theorem 1). This should be contrasted against results for compact spectra (Theorems 2 and 3). To cite this article: A. Olevskii, A. Ulanovskii, C. R. Acad. Sci. Paris, Ser. I 345 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Interpolation par des fonctions à petits spectres. Nous montrons que si Λ est une suite réelle «générique», il existe un ensemble S de mesure arbitrairement petite et non borné (réunion de voisinages d'entiers) tel que toute fonction à décroissance convenable sur Λ soit prolongeable sur \mathbb{R} en une fonction de carré integrable dont le spectre est dans S (Théorème 1). Cela doit être comparé aux résultats concernant les spectres compacts (Théorèmes 2 et 3). Pour citer cet article : A. Olevskii, A. Ulanovskii, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Results

Let $\Lambda=\left\{\cdots<\lambda_{j-1}<\lambda_{j}<\lambda_{j+1}<\cdots, j \in \mathbb{Z}\right\}$ be a real sequence. We shall assume that it is separated, i.e. $\inf _{j}\left(\lambda_{j}-\lambda_{j-1}\right)>0$. By $D^{+}(\Lambda)$ we denote the upper uniform density of Λ (see [2, p. 303], [1,3]):

$$
D^{+}(\Lambda):=\lim _{l \rightarrow \infty} \max _{a \in \mathbb{R}} \frac{\#(\Lambda \cap(a, a+l))}{l} .
$$

Given a space of complex sequences $X=\left\{c_{j}, j \in \mathbb{Z}\right\}$, we shall say that a set $S \subset \mathbb{R}$ is an interpolation spectrum for X, if for every $\left\{c_{j}\right\} \in X$ there is a function $F \in L^{2}(S)$ whose Fourier transform \hat{F} satisfies:

$$
\begin{equation*}
\hat{F}\left(\lambda_{j}\right)=c_{j}, \quad j \in \mathbb{Z} \tag{1}
\end{equation*}
$$

The case $X=l^{2}$ is classical. Kahane [2] proved that for a single interval S to be interpolation spectrum, it is necessary that mes $S \geqslant 2 \pi D^{+}(\Lambda)$, and it is sufficient that mes $S>2 \pi D^{+}(\Lambda)$. We mention also Beurling's result [1],

[^0]who proved that the last condition is necessary and sufficient for interpolation of l^{∞} by functions bounded on \mathbb{R} with spectra on an interval S.

Simple examples show that the sufficient condition above fails already when S is a union of several intervals. However, using a new approach, Landau [3] proved that the necessary condition in Kahane's result still holds for every bounded set S.

In the present note we show that if S is unbounded and X is a space of 'slowly decreasing sequences', then no such necessary condition may exist. For 'generic' Λ we construct interpolation spectra of arbitrary small measure:

Theorem 1. Let a separated sequence Λ be linearly independent $(\bmod \pi)$ over the field of rational numbers. Then for every $\delta>0$ there is a set S, a union of some of intervals centered at integers, such that:
(i) $\mathrm{mes} S<\delta$;
(ii) for every sequence $c_{j}=\mathrm{O}\left(|j|^{-\alpha}\right), \alpha>1$, there is a function $F \in L^{2}(S)$ satisfying (1).

However, if S is a compact set, an analogue of classical results holds even for spaces X of sequences having a 'very fast decay'.

In the next result we suppose that the sequence Λ is distributed 'regularly', i.e. the limit

$$
D(\Lambda):=\lim _{l \rightarrow \infty} \frac{\#(\Lambda \cap(a, a+l))}{l}
$$

exists uniformly with respect to a.
Theorem 2. Let S be a compact set. If for every sequence $c_{j}=\mathrm{O}\left(\mathrm{e}^{-|j|^{\alpha}}\right), 0<\alpha<1$, there exists $F \in L^{2}(S)$ satisfying (1), then mes $S \geqslant 2 \pi D(\Lambda)$.

We also prove a version of Landau's result for 'interpolation with error'. Denote by $\left\{\mathbf{e}_{j}, j \in \mathbb{Z}\right\}$ the standard orthonormal basis in l^{2}.

Theorem 3. Let S be a compact set, Λ be a separated sequence and $0<d<1$. Suppose there is a sequence of functions $F_{j} \in L^{2}(S), \sup _{j}\left\|F_{j}\right\|<\infty$, such that $\left\|\left.\hat{F}_{j}\right|_{\Lambda}-\mathbf{e}_{j}\right\|_{l^{2}(\mathbb{Z})} \leqslant d$ for all $j \in \mathbb{Z}$. Then

$$
\begin{equation*}
\text { mes } S \geqslant 2 \pi\left(1-d^{2}\right) D^{+}(\Lambda) . \tag{2}
\end{equation*}
$$

The bound (2) is sharp for every d.

2. Proof of Theorem 1

Here we shall sketch the proof of Theorem 1. It consists of several steps.

1. Without loss of generality we may assume that $\alpha<2$. Fix any number $\beta, 1<\beta<\alpha$. Set

$$
\begin{equation*}
S:=\bigcup_{j \in \mathbb{Z}} S_{j}, \quad S_{j}:=\left(-M_{j}-5 \gamma_{j},-M_{j}+5 \gamma_{j}\right) \cup\left(M_{j}-5 \gamma_{j}, M_{j}+5 \gamma_{j}\right), \tag{3}
\end{equation*}
$$

where

$$
\gamma_{j}:=\frac{\gamma}{1+|j|^{\beta}},
$$

the sequence M_{j} will be specified in step 4 , and γ is any small positive number such that mes $S<\delta$.
2. Set

$$
\Lambda_{k}:=\left(\Lambda-\lambda_{k}\right) \backslash\{0\}, \quad k \in \mathbb{Z}
$$

The independence condition on Λ implies, by Kronecker's theorem, that for every $N>0$ the subgroup $\{\operatorname{m\lambda }(\bmod \pi)$, $\left.\lambda \in \Lambda_{k} \cap[-N, N], m \in \mathbb{Z}\right\}$ is dense in the l-dimensional torus, l being the number of elements in $\Lambda_{k} \cap[-N, N]$. Hence, the l numbers $|\cos (M x)|, x \in \Lambda_{k} \cap[-N, N]$, can be made as small as we like by choosing appropriate $M \in \mathbb{N}$.
3. Set

$$
g_{j}(x):=\cos \left(M_{j}\left(x-\lambda_{j}\right)\right)\left(\frac{\sin \gamma_{j}\left(x-\lambda_{j}\right)}{\gamma_{j}\left(x-\lambda_{j}\right)}\right)^{5} .
$$

The spectrum of g_{j} belongs to S_{j}, and we have

$$
\begin{equation*}
g_{j}\left(\lambda_{j}\right)=1, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|g_{j}\right\|_{L^{2}(\mathbb{R})}^{2} \leqslant \text { const } \cdot\left(1+|j|^{\beta}\right), \quad j \in \mathbb{Z} . \tag{5}
\end{equation*}
$$

4. By Step 2, the first factor in the definition of g_{j} can be made arbitrarily small for $\lambda \neq \lambda_{j},\left|\lambda-\lambda_{j}\right|<N_{j}$. By using N_{j} large enough, one may check that for every positive $\epsilon>0$ there exists a sequence $M_{j} \in \mathbb{N}$ such the functions g_{j} are small on $\Lambda \backslash\left\{\lambda_{j}\right\}$ in the sense that

$$
\begin{equation*}
\left|g_{j}\left(\lambda_{k}\right)\right| \leqslant \frac{\epsilon}{\left(1+j^{2}\right)\left(1+(j-k)^{4}\right)}, \quad k \neq j, k, j \in \mathbb{Z} . \tag{6}
\end{equation*}
$$

5. Given a sequence $\mathbf{c}=\left\{c_{j}, j \in \mathbb{Z}\right\}$, set

$$
\|\mathbf{c}\|_{\beta}^{2}:=\sum_{j=-\infty}^{\infty}\left|c_{j}\right|^{2}\left(1+|j|^{\beta}\right)
$$

Let l_{β}^{2} denote the weighted space of all sequences $\mathbf{c},\|\mathbf{c}\|_{\beta}<\infty$. Using (6) and (4), one may check that the linear operator R defined by

$$
R \mathbf{e}_{j}:=\sum_{k=-\infty}^{\infty} g_{j}\left(\lambda_{k}\right) \mathbf{e}_{k}-\mathbf{e}_{j}, \quad j \in \mathbb{Z},
$$

is well defined on l_{β}^{2}. Moreover, if ϵ in (6) is small enough, the norm of this operator in l_{β}^{2} is less than 1 . It follows that the operator $T:=I+R$ is invertible in l_{γ}^{2}, where I is the identity operator. We conclude that for every $\mathbf{c} \in l_{\beta}^{2}$ the interpolation problem (1) has a solution F whose Fourier transform is given by

$$
\hat{F}(x)=\sum_{j \in \mathbb{Z}} b_{j} g_{j}(x), \quad\left\{b_{j}\right\}=T^{-1} \mathbf{c} \in l_{\beta}^{2} .
$$

Also, by (3) and (5), we see that $F \in L^{2}(S)$.

Remarks.

1. Let $\xi_{j}, j \in \mathbb{Z}$, be independent identically distributed random variables having a continuous distribution function concentrated on some neighborhood of the origin. By Theorem 1, the random sequence $\Lambda=\left\{n+\xi_{n}, n \in \mathbb{Z}\right\}$ has the property that for each $\delta>0$, with probability one there exists a random set S, mes $S<\delta$, such that each sequence $c_{j}=\mathrm{O}\left(|j|^{-\alpha}\right), \alpha>1$, can be interpolated by an L^{2}-function f with the spectrum in S.
2. The decay assumption in Theorem 1 cannot be replaced by $\mathbf{c} \in l^{2}$. Let Λ be the random sequence above and $X=l^{2}$. Then one can show that with probability one no set S, mes $S<2 \pi$, can serve as an interpolation spectrum for X.

3. Compact spectra: interpolation with error

Here we sketch a proof of Theorem 3.

1. Claim: Let $0<c<1$ and W be a linear subspace of the Paley-Wiener space $P W(-\pi, \pi)$, which is ' c-concentrated on some set Q ' in the sense that

$$
\int_{Q}|f|^{2}>c\|f\|_{L^{2}(\mathbb{R})}^{2}, \quad f \in W .
$$

Then

$$
\operatorname{dim} W \leqslant \frac{1}{c} \operatorname{mes} Q+1
$$

This follows from Landau's Lemma 1 (compare (iii) and (viii) in [3], p. 41).
2. Fix a small number $b>0$ and set $S_{b}:=S+(-b, b)$. Let Φ be any infinitely smooth function supported on $(-b, b)$ satisfying $\hat{\Phi}(0)=1$ and $|\hat{\Phi}(x)|<1, x \neq 0$. Set

$$
G_{j}(t):=F_{j}(t) *\left(\mathrm{e}^{-\mathrm{i} \lambda_{j} t} \Phi(t)\right) .
$$

Set $f_{j}=\hat{F}_{j}$ and $g_{j}=\hat{G}_{j}$. Clearly, each $\left.g_{j}\right|_{\Lambda}$ approximates \mathbf{e}_{j} with an l^{2}-error $\leqslant d$. One can prove that if N is sufficiently large, then the space Z spanned by g_{j} when $\left|\lambda_{j}\right|<N$, is c^{\prime}-concentrated on the interval $J:=(1+$ $b)(-N, N)$, where c^{\prime} can be chosen arbitrary close to 1 . Hence, for all large N, the space Y of the inverse Fourier transform of the functions $g \cdot 1_{J}, g \in Z$, is c-concentrated on S_{b}, again with c arbitrary close to 1 . The claim above, after re-scaling, gives:

$$
\operatorname{dim} Y \leqslant \frac{(1+b) N}{\pi c} \operatorname{mes} S_{b}+1 .
$$

3. Fix a large number N, and denote by $v=\nu(N)$ the number of points of Λ in $(-N, N)$. Define vectors \mathbf{v}_{j} in the Euclidean space \mathbb{C}^{ν} by

$$
\mathbf{v}_{j}(l):=g_{j}\left(\lambda_{l}\right), \quad\left|\lambda_{l}\right|<N .
$$

Let V be the linear span of \mathbf{v}_{j} in \mathbb{C}^{v}. Clearly, $\operatorname{dim} Y \geqslant \operatorname{dim} V$. On the other hand, each of \mathbf{v}_{j} approximates the corresponding \mathbf{e}_{j} with an error $\leqslant d$. A well-known estimate of the Kolmogorov width of octahedron implies

$$
\operatorname{dim} V \geqslant\left(1-d^{2}\right) \nu
$$

4. Combining the last three inequalities, one obtains an estimate of v. The previous argument can be repeated for each interval ($a-N, a+N$), uniformly over a. Hence, taking the limit as $N \rightarrow \infty$, we get an estimate of $D^{+}(\Lambda)$. Finally, taking the limit as $b \rightarrow 0$ and $c \rightarrow 1$, we obtain (2).

Theorem 2 can be proved basically by the same argument (for regularly distributed Λ). Observe that the decay restriction in Theorem 2 can be replaced by any non quasi-analytic one.

The authors appreciate the hospitality of the Mathematisches Forschungsinstitut Oberwolfach during their research-in-pair stay, where a part of this work was completed.

References

[1] A. Beurling, Interpolation for an interval in \mathbb{R}^{1}, in: The Collected Works of Arne Beurling, in: Harmonic Analysis, vol. 2, Birkhäuser, Boston, 1989.
[2] J.-P. Kahane, Sur les fonctions moyenne-périodiques bornées, Ann. Inst. Fourier 7 (1957) 293-314.
[3] H.J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967) 37-52.

[^0]: E-mail addresses: olevskii@post.tau.ac.il, olevskii@yahoo.com (A. Olevskii), Alexander.Ulanovskii@uis.no (A. Ulanovskii).

