A new approach to Kolmogorov equations in infinite dimensions and applications to the stochastic 2D Navier-Stokes equation

Michael Röckner, Zeev Sobol
Department of Mathematics, Purdue University, West Lafayette, IN 47907-2, USA
Received 20 December 2006; accepted after revision 19 July 2007
Available online 23 August 2007
Presented by Paul Malliavin

Abstract

In this Note we present a new approach to solve Kolmogorov equations in infinitely many variables in weighted spaces of weakly continuous functions, including the case of non-constant possibly degenerate diffusion coefficients. To cite this article: M. Röckner, Z. Sobol, C. R. Acad. Sci. Paris, Ser. I 345 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une nouvelle approche dans une infinité de dimensions et applications à l'équation Navier-Stokes stochastique en 2D. Dans cette Note nous présentons une nouvelle approche pour résoudre des équations de Kolmogorov à une infinité de variables dans des espaces à poids de fonctions faiblement continus. Le cas de coéfficients de diffusion non-constants et éventuellement dégénérés est inclus. Pour citer cet article : M. Röckner, Z. Sobol, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

The purpose of this Note is to present a new general approach to Kolmogorov equations in infinite dimensions based on the methods first developed in [2]. We illustrate this approach through its application to the stochastic 2D Navier-Stokes equations (NSE, see [1] and the references therein) with state dependent ('multiplicative') noise, which on an open set $\Omega \subseteq \mathbb{R}^{d}$ or $\Omega=\mathbb{T}^{d}$ is given by

$$
\begin{equation*}
\frac{\partial}{\partial t} u+u \cdot \nabla u=v \Delta u-\nabla p+f, \quad \operatorname{div} u=0, \quad u \upharpoonright_{\partial \Omega}=0, \quad u(x, 0)=u_{0}(x) . \tag{1}
\end{equation*}
$$

Here $u(t, x) \in \mathbb{R}^{2}$ is the velocity of a fluid in $x \in \Omega$ at time $t \geqslant 0, p(t, x)$ the pressure, $f(t, x)$ an external stochastic force and v the viscosity constant. We consider the Laplacian with Dirichlet and periodic boundary conditions.

As usual we project (1) onto the sub-space $H \subset L^{2}\left(\Omega \rightarrow \mathbb{R}^{2}\right)$ of divergence free vector fields by the LerayHelmholtz projection P. Then the SPDE (1) becomes an SDE in H.

To describe the stochastic force f precisely, let $\left\{\ell_{k}\right\}_{k=1}^{\infty}$ be the eigenbasis of the part of Δ on H and let $\left\{w_{t}^{k}\right\}_{k=1}^{\infty}$ be a sequence of iid Brownian motions with $\mathcal{F}_{t}:=\sigma\left\{w_{t}^{k} \mid 0 \leqslant s \leqslant t, k=1,2,3, \ldots\right\}$ its associated filtration. If σ is an $\left(\mathcal{F}_{t}\right)$-adapted locally bounded separable process taking values in the space $L_{2}(H)$ of Hilbert-Schmidt operators on

[^0]H, the series $\sum_{k} \int_{0}^{t} \sigma \ell_{k} \mathrm{~d} w_{t}^{k}$ converges in H almost surely. We denote the differential of the latter process by $\sigma \mathrm{d} w_{t}$ and set $f=\frac{\sigma(u) \mathrm{d} \omega_{t}}{\mathrm{~d} t}$, with a continuous map $\sigma: H \rightarrow L_{2}(H)$, i.e. we allow σ to depend on the solution. Thus, (1) turns into the following SDE in H :
\[

$$
\begin{equation*}
\mathrm{d} u_{t}=\left[v \Delta u_{t}-P\left(u_{t} \cdot \nabla u_{t}\right)\right] \mathrm{d} t+\sigma\left(u_{t}\right) \mathrm{d} w_{t} . \tag{2}
\end{equation*}
$$

\]

The usual way to obtain the Kolmogorov equations corresponding to SDE (2) is to reformulate the latter as a martingale problem, which is a standard approach to construct weak solutions to an SDE of type

$$
\begin{equation*}
\mathrm{d} u_{t}=\mu\left(u_{t}\right) \mathrm{d} t+\sigma\left(u_{t}\right) \mathrm{d} w_{t} \tag{3}
\end{equation*}
$$

(cf. Stroock and Varadhan in [5] if $H=\mathbb{R}^{d}$): Let \mathcal{D} be the set of all cylindrical functions of type

$$
\begin{equation*}
\Phi(u)=\phi\left(\left\langle\ell_{1}, u\right\rangle,\left\langle\ell_{2}, u\right\rangle, \ldots,\left\langle\ell_{n}, u\right\rangle\right), \quad n \in \mathbb{N}, \phi \in C_{b}^{2}\left(\mathbb{R}^{n}\right) . \tag{4}
\end{equation*}
$$

Itô's formula applied to $\Phi\left(u_{t}\right)$, with u_{t} solving (3), yields that

$$
\begin{equation*}
m_{\Phi}(t):=\Phi\left(u_{t}\right)-\Phi\left(u_{0}\right)-\int_{0}^{t}(L \Phi)\left(u_{s}\right) \mathrm{d} s \tag{5}
\end{equation*}
$$

is an $\left(\mathcal{F}_{t}\right)$-martingale, with the Kolmogorov operator L defined as follows:

$$
\begin{equation*}
L \Phi(u)=\frac{1}{2} \sum_{k m}\left\langle\sigma(u) \ell_{k}, \sigma(u) \ell_{m}\right\rangle \frac{\partial^{2} \Phi(u)}{\partial \ell_{k} \partial \ell_{m}}+\sum_{k} \mu_{k}(u) \frac{\partial \Phi(u)}{\partial \ell_{k}}, \quad \Phi \in \mathcal{D}, \tag{6}
\end{equation*}
$$

where in the special case of (2)

$$
\mu_{k}(u):=\left\langle\ell_{k}, \mu(u)\right\rangle=\left\langle v \Delta \ell_{k}, u\right\rangle+\left\langle u \cdot \nabla \ell_{k}, u\right\rangle, \quad k \in \mathbb{N} .
$$

Then a solution to the martingale problem (L, \mathcal{D}) is a family of measures $\left(\mathbb{P}_{u}\right)_{u \in H}$ on $C([0, \infty), H)$, i.e. the space of continuous trajectories in H such that, for $u \in H$, first, $\mathbb{P}_{u}\left\{u_{0}=u\right\}=1$, and second, for $\Phi \in \mathcal{D}$, the process m_{Φ} is a \mathbb{P}_{u}-martingale with respect to the standard filtration on $C([0, \infty), H)$.

We confine ourselves to Markov solutions, i.e. $\left(\mathbb{P}_{u}\right)_{u \in H}$ form a Markov process. Then it suffices to construct the transition probability semigroup (TPS), i.e. a semi-group of Markov kernels $p_{t}(u, \mathrm{~d} v)$ on H such that

$$
\begin{equation*}
p_{t} \Phi(u)-\Phi(u)=\int_{0}^{t} p_{s}(L \Phi)(u) \mathrm{d} s, \quad t>0, \Phi \in \mathcal{D}, \tag{7}
\end{equation*}
$$

which is obtained from (5) by taking expectation. (7) as equations in the unknown measures $p_{s}(u, \mathrm{~d} v)$ are called Kolmogorov equations and by construction can be considered as a linearization of (3).

A purely analytic method of solving (7) was introduced in [2] and then developed in [3] (see also [4]). Its main point is the construction of the TPS p_{t} as a semi-group P_{t} of Markov operators on

$$
\begin{align*}
C_{\mathbb{V}}:= & \{f:\{\mathbb{V}<\infty\} \rightarrow \mathbb{R} \mid \\
& f\left\lceil_{\{\mathbb{V} \leqslant R\}} \text { is weakly continuous } \forall R>0 \text { and } \lim _{R \rightarrow \infty} \sup _{\{\mathbb{V} \geqslant R\}} \mathbb{V}^{-1}|f|=0\right\}, \tag{8}
\end{align*}
$$

$\mathbb{V}: H \rightarrow[0, \infty]$ being a Lyapunov function for L, i.e. \mathbb{V} is of compact level sets, such that $(\lambda-L) \mathbb{V}>0$.
To state our result precisely, let us consider the SDE (3) on an abstract separable Hilbert space H. Let $H_{n} \subset H_{n+1} \subset$ H, be an increasing sequence of finite dimensional subspaces of $H, H_{\infty}:=\bigcup H_{n}$ be dense in $H, P_{n}: H \rightarrow H_{n}$ be the corresponding orthogonal projections.

Hypothesis 1. The noise $\sigma: H \rightarrow L_{2}(H)$ is Lipschitz continuous and has block diagonal structure, that is, there exists a sequence $N_{n} \rightarrow \infty$ such that $P_{N_{n}} \sigma(u)=P_{N_{n}} \sigma\left(P_{N_{n}} u\right)$ for all $u \in H$.

Hypothesis 2. Let $N_{n} \rightarrow \infty$ be as in Hypothesis $1, \sigma_{n}(u):=P_{N_{n}} \sigma(u)=P_{N_{n}} \sigma\left(P_{N_{n}} u\right)$. For all $n \in \mathbb{N}$, there exist $\mu_{n} \in C\left(H \rightarrow H_{N_{n}}\right)$, and $\mathbb{V}_{n} \in C^{2}(H), \mu_{n}(u)=\mu_{n}\left(P_{N_{n}} u\right), \mathbb{V}_{n}(u)=\mathbb{V}_{n}\left(P_{N_{n}} u\right)$ for all $u \in H$, such that
(a) $\mathbb{V}_{n}>0$;
(b) $\sup _{u, w \in H_{N_{n}}, u \neq w,|u|,|w| \leqslant R} \frac{\left\langle\mu_{n}(u)-\mu_{n}(w), u-w\right\rangle}{|u-w|^{2}}<\infty$;
(c) There exists $\lambda \in \mathbb{R}$ independent of n such that, for a.a. $u \in H_{N_{n}}$,

$$
\begin{align*}
& \limsup _{H_{N_{n}} \ni w \rightarrow u} \frac{\left\langle\mu_{n}(u)-\mu_{n}(w), u-w\right\rangle}{|u-w|^{2}}+\sup _{\xi \in H_{N_{n}},|\xi|=1}\left|D_{\xi} \sigma_{n}\right|_{L_{2}}^{2}(u) \\
& \quad+\sup _{\xi \in H_{N_{n}},|\xi|=1}\left\langle D_{\xi} \sigma_{n}^{*}(x) \xi, \sigma_{n}^{*} \frac{D \mathbb{V}_{n}}{\mathbb{V}_{n}}\right\rangle(u)+\frac{L_{n} \mathbb{V}_{n}}{\mathbb{V}_{n}}(u) \leqslant \lambda, \tag{9}
\end{align*}
$$

where L_{n} on $C^{2}\left(H_{N_{n}}\right)$ is given by (6) with μ_{n}, σ_{n} replacing σ and μ, respectively.
Hypothesis 3. Let $N_{n} \rightarrow \infty$ be as in Hypothesis 1, and $\mu_{n}, \mathbb{V}_{n}, L_{n}$ be as in Hypothesis 2. There are positive functions \mathbb{V}, \mathbb{W} of compact level sets, finite on H_{∞}, such that
(a) $\mathbb{V}_{n}, \mathbb{V} \in C_{\mathbb{W}}$ (the latter is defined as in (8)) and $\mathbb{V}_{n} \rightarrow \mathbb{V}$ in $C_{\mathbb{W}}$ as $n \rightarrow \infty$;
(b) For all $u \in\{\mathbb{W}<\infty\}, \mu(u)$ is defined, $\left|\mu_{n}-P_{N_{n}} \mu\right|(u) \leqslant c \frac{\mathbb{W}}{\mathbb{V}}(u)$ and $\left|\mu_{n}-P_{N_{n}} \mu\right|(u) \rightarrow 0$ as $n \rightarrow \infty$;
(c) $\lim \sup _{n \rightarrow \infty} \inf _{u \in H_{N_{n}}} \frac{\left(\lambda_{*}-L_{n}\right) \mathbb{V}_{n}}{W}(u) \geqslant 1$ for some $\lambda_{*} \in \mathbb{R}$.

The following theorem is our main result in [3]. To the best of our knowledge it is the first result on solving the Kolmogorov equations (7) purely analytically for all points u in an explicitly specified subspace of H and with a non-constant possibly degenerate diffusion matrix in the second order part of L.

Theorem 4. Let Hypotheses 1-3 hold. Then there exists a unique solution to (7) on $\{\mathbb{V}<\infty\}$ and the TPS constitutes a C_{0}-semi-group of quasi-contractions on $C_{\mathbb{V}}$. Furthermore, there exists a unique Markov solution $\left(\mathbb{P}_{u}\right)_{u \in\{\mathbb{V}<\infty\}}$ of (5).

We now apply Theorem 4 to the 2D NSE (2). Let H be the sub-space of $L^{2}\left(\Omega \rightarrow \mathbb{R}^{2}\right)$ consisting of all divergence free vector fields, let $H_{0}^{1}:=H_{0}^{1}\left(\Omega \rightarrow \mathbb{R}^{2}\right)$ (note that $H_{0}^{1}=H^{1}$ if $\left.\Omega=\mathbb{T}^{2}\right), H^{2}:=H^{2}\left(\Omega \rightarrow \mathbb{R}^{2}\right)$ and let $\mu(u):=$ $\nu \Delta u-P(u \cdot \nabla u)$ for $u \in H_{0}^{1} \cap H^{2}$.

Theorem 5. Let $\sigma: H \rightarrow L_{2}\left(H, H_{0}^{1}\right)$ be bounded, satisfying Hypothesis 1.
Moreover, let $\mathbb{V}(u)=\mathbb{V}_{\varkappa}(u)=\mathrm{e}^{\varkappa|\nabla u|^{2}}$ for $\varkappa<\nu / \sup _{u}|\sigma(u)|_{H \rightarrow H}^{2}$.
Then (7) for L with μ and σ as above has a unique solution on $H_{0}^{1} \cap H$ and the respective TPS constitutes a C_{0}-semi-group of quasi-contractions on C_{V}. Furthermore, there exists a unique Markov solution $\left(\mathbb{P}_{u}\right)_{u \in H_{0}^{1} \cap H}$ of the corresponding martingale problem.

Proof. Let $\mathbb{W}(u):=c \mathbb{V}(u)|\Delta u|^{2}$ if $u \in H_{0}^{1} \cap H^{2}$, and $\mathbb{W} \equiv+\infty$ else. Let H_{n} be the linear hull of the first n eigenvectors of $\Delta, \mathbb{V}_{n}(u):=\mathbb{V}\left(P_{n} u\right)$ and $\mu_{n}(u):=P_{n} \mu\left(P_{n} u\right), n \in \mathbb{N}$. Then $\left|P_{n} \mu(u)-\mu_{n}(u)\right| \leqslant 2|u||\nabla u| \leqslant c|\Delta u|^{2}$. So Hypothesis 2(a)-(b) and Hypothesis 3(a)-(b) readily follow.

Note that for $u, \xi, \eta \in H \cap H_{0}^{1} \cap H^{2}$

$$
\begin{aligned}
& \frac{D_{\xi} \mathbb{V}}{\mathbb{V}}(u)=-2 \varkappa\langle\Delta u, \xi\rangle, \quad \frac{D_{\xi \eta}^{2} \mathbb{V}}{\mathbb{V}}(u)=4 \varkappa^{2}\langle\Delta u, \xi\rangle\langle\Delta u, \eta\rangle-2 \varkappa\langle\Delta \xi, \eta\rangle, \\
& \langle\Delta u, P(u \cdot \nabla u)\rangle=\int_{\Omega}(\operatorname{curl} u) \operatorname{curl} P(u \cdot \nabla u) \mathrm{d} s=\int_{\Omega}(\operatorname{curl} u)(u \cdot \nabla \operatorname{curl} u) \mathrm{d} s=0 .
\end{aligned}
$$

So

$$
\begin{align*}
\frac{L_{n} \mathbb{V}_{n}}{\mathbb{V}_{n}}(u) & =-2 \varkappa v|\Delta u|^{2}+2 \varkappa^{2}\left|\sigma^{*}(u) \Delta u\right|^{2}+\varkappa\left|\sigma^{*}(u)(-\Delta)^{1 / 2}\right|_{L^{2}(H)}^{2} \\
& \leqslant-2 \varkappa\left(v-\varkappa \sup _{u}|\sigma(u)|_{H \rightarrow H}^{2}\right)|\Delta u|^{2}+C \tag{10}
\end{align*}
$$

So Hypothesis 3(c) follows. Furthermore, for $u, w \in H_{0}^{1} \cap H^{2} \cap H$,

$$
\begin{aligned}
\langle u-w, P(u \cdot \nabla u)-P(w \cdot \nabla w)\rangle & =\int_{\Omega}(u-w) \cdot(u \cdot \nabla u-w \cdot \nabla w) \mathrm{d} s \\
& =\int_{\Omega}(u-w) \cdot((u-w) \cdot \nabla u) \mathrm{d} s
\end{aligned}
$$

since $\int_{\Omega}(u-w) \cdot(w \cdot \nabla(u-w)) \mathrm{d} s=\frac{1}{2} \int_{\Omega} w \cdot \nabla|u-w|^{2} \mathrm{~d} s=0$.
So, $|\langle u-w, P(u \cdot \nabla u)-P(w \cdot \nabla w)\rangle| \leqslant|\Delta u|\left|(-\Delta)^{-1 / 2}\right| u-\left.w\right|^{2}|\leqslant c| \Delta u| | u-\left.w\right|^{2}$.
Hence, for any $\varkappa, \varepsilon>0$,

$$
\limsup _{H_{N_{n}} \ni w \rightarrow u} \frac{\left\langle\mu_{n}(u)-\mu_{n}(w), u-w\right\rangle}{|u-w|^{2}} \leqslant 2 \varkappa \varepsilon|\Delta u|^{2}+\frac{c}{\varkappa \varepsilon}
$$

Now, using (10) it is easy to verify (9) and thus Hypothesis 2(c) holds.

References

[1] F. Flandoli, M. Romito, Markov selections and their regularity for the three-dimensional stochastic Navier-Stokes equations, C. R. Math. Acad. Sci. Paris, Ser. I 343 (2006) 47-50.
[2] M. Röckner, Z. Sobol, Kolmogorov equations in infinite dimensions: well-posedness and regularity of solutions, with applications to stochastic generalized Burgers equations, Ann. Probab. 34 (2006) 663-727.
[3] M. Röckner, Z. Sobol, Markov solutions for martingale problem: method of Lyapunov function, in preparation.
[4] R. Stasi, m-dissipativity for 2D Navier-Stokes operators with periodic boundary conditions, in preparation.
[5] D.W. Stroock, S.R.S. Varadhan, Multidimensional Diffusion Processes, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 233, Springer-Verlag, Berlin-New York, 1979.

[^0]: E-mail addresses: roeckner@math.purdue.edu (M. Röckner), zsobol@gmail.com (Z. Sobol).

