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Abstract

In this Note we present a new approach to solve Kolmogorov equations in infinitely many variables in weighted spaces of
weakly continuous functions, including the case of non-constant possibly degenerate diffusion coefficients. To cite this article:
M. Riockner, Z. Sobol, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une nouvelle approche dans une infinité de dimensions et applications a I’équation Navier—Stokes stochastique en 2D.
Dans cette Note nous présentons une nouvelle approche pour résoudre des équations de Kolmogorov a une infinité de variables
dans des espaces a poids de fonctions faiblement continus. Le cas de coéfficients de diffusion non-constants et éventuellement
dégénérés est inclus. Pour citer cet article : M. Rockner, Z. Sobol, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

The purpose of this Note is to present a new general approach to Kolmogorov equations in infinite dimensions
based on the methods first developed in [2]. We illustrate this approach through its application to the stochastic 2D
Navier—Stokes equations (NSE, see [1] and the references therein) with state dependent (‘multiplicative’) noise, which
on an open set 2 C R or £2 =T is given by

0
5u+u~Vu=vAu—Vp+f, divu =0, ulse=0, ulx,0) =ugx). (1)

Here u(t,x) € R2? is the velocity of a fluid in x € £2 attime ¢t > 0, p(¢, x) the pressure, f (¢, x) an external stochastic
force and v the viscosity constant. We consider the Laplacian with Dirichlet and periodic boundary conditions.

As usual we project (1) onto the sub-space H C L*(£2 — R?) of divergence free vector fields by the Leray—
Helmboltz projection P. Then the SPDE (1) becomes an SDE in H.

To describe the stochastic force f precisely, let {£;};2 | be the eigenbasis of the part of A on H and let {wf el
be a sequence of iid Brownian motions with F; := o{wf |0<s<t,k=1,2,3,...}its associated filtration. If ¢ is an
(Fy)-adapted locally bounded separable process taking values in the space L>(H) of Hilbert-Schmidt operators on
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H, the series ) f(; ol dwf converges in H almost surely. We denote the differential of the latter process by o dw;

and set f = %tdw’, with a continuous map o : H — Ly(H), i.e. we allow o to depend on the solution. Thus, (1)

turns into the following SDE in H:
du, = [vAu, — P(u; - Vu,)] dr + o (uy) dwy. 2

The usual way to obtain the Kolmogorov equations corresponding to SDE (2) is to reformulate the latter as a
martingale problem, which is a standard approach to construct weak solutions to an SDE of type

du; = w(uy) dt + o (i) dwy 3
(cf. Stroock and Varadhan in [5] if H = R?): Let D be the set of all cylindrical functions of type
D) =¢((t1,u), (L2,u), ..., (L u)), neN,peCpR"). 4)

1t6’s formula applied to @ (u;), with u; solving (3), yields that
me(t) := P u;) — @ (ug) — /(L@)(us)ds, (5)
0

is an (F;)-martingale, with the Kolmogorov operator L defined as follows:

1 8(15
km

®eD, (6)

where in the special case of (2)
k() == (Ce, p(w)) = (WAL, u) + (u- Ve, u), keN.

Then a solution to the martingale problem (L, D) is a family of measures (P,),cy on C([0, c0), H), i.e. the space
of continuous trajectories in H such that, for u € H, first, P, {uo = u} = 1, and second, for @ € D, the process m¢ is
a [P, -martingale with respect to the standard filtration on C ([0, c0), H).

We confine ourselves to Markov solutions, i.e. (P,),cy form a Markov process. Then it suffices to construct the
transition probability semigroup (TPS), i.e. a semi-group of Markov kernels p;(u, dv) on H such that

r
pi® W) —d(u) = f ps(L®)w)ds, t>0,®eD, @)
0

which is obtained from (5) by taking expectation. (7) as equations in the unknown measures p;(u,dv) are called
Kolmogorov equations and by construction can be considered as a linearization of (3).

A purely analytic method of solving (7) was introduced in [2] and then developed in [3] (see also [4]). Its main
point is the construction of the TPS p; as a semi-group P; of Markov operators on

CV::{f:{V<oo}—>R|
f Ttv<ry 18 weakly continuous VR > 0 and lim sup vhf= 0}, ®)
R_)OO{VZR}

V: H — [0, oo] being a Lyapunov function for L, i.e. V is of compact level sets, such that (A — L)V > 0.

To state our result precisely, let us consider the SDE (3) on an abstract separable Hilbert space H. Let H, C H,4+1 C
H, be an increasing sequence of finite dimensional subspaces of H, Hoo := | J H, be dense in H, P, : H — H, be
the corresponding orthogonal projections.

Hypothesis 1. The noise o : H — L,(H) is Lipschitz continuous and has block diagonal structure, that is, there exists
a sequence N, — oo such that Py,o (u) = Py,0(Py,u) forallu € H.

Hypothesis 2. Let N, — oo be as in Hypothesis 1, 0, () := Py,0(u) = Py,0(Ppn,u). For all n € N, there exist
wn € C(H— Hy,),andV, € CX(H), () = wn(Pn,u), V,(u) =V, (Py,u) for all u € H, such that
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(a) V,, >0;
(b) SUp, wery, . utw. jul,|w|<R W < o0;
(c) There exists A € R independent of n such that, for a.a. u € Hy,,

(n (@) — pp(w), u — w)

lim sup + sup |Dgo |2 (n)
Hy, 3w—u lu —w|? EcHy, |E|=1 sonits
DV, L,V
+  sup <D§0,T(X)S,0,T ”>(u>+ () <A, 9)
EcHy, . E|=1 Vi \

where L, on C Z(HN,I) is given by (6) with u,, o, replacing o and u, respectively.

Hypothesis 3. Let N,, — oo be as in Hypothesis 1, and u,, V,,, L, be as in Hypothesis 2. There are positive functions
V, W of compact level sets, finite on Hy,, such that

(a) V,,V e Cw (the latter is defined as in (8)) and V,, — V in Cy as n — o0;
(b) Forall u € {W < oo}, u(u) is defined, |, — Py, t|(u) < c%(u) and |u, — Py, u|(u) — 0 as n — oo;

(¢) limsup,,_, o infycm,, %(u) > 1 for some A, € R.

The following theorem is our main result in [3]. To the best of our knowledge it is the first result on solving the
Kolmogorov equations (7) purely analytically for all points # in an explicitly specified subspace of H and with a
non-constant possibly degenerate diffusion matrix in the second order part of L.

Theorem 4. Let Hypotheses 1-3 hold. Then there exists a unique solution to (7) on {V < oo} and the TPS constitutes a
Co-semi-group of quasi-contractions on Cy. Furthermore, there exists a unique Markov solution (P,),e(v<oc} of (5).

We now apply Theorem 4 to the 2D NSE (2). Let H be the sub-space of L2(£2 — R?) consisting of all divergence
free vector fields, let HO1 = HO1 (£2 - R?) (note that Hl = H! if 2 =T?), H? := H*(2 — R?) and let u(u) :=
vAu — P(u - Vu) foru e HO1 N H2.

Theorem 5. Let o : H — Ly(H, HOI) be bounded, satisfying Hypothesis 1.

Moreover, let V(u) =V, (u) = e”w”‘zfor x <v/sup, |a(u)|%1_>H.

Then (7) for L with u and o as above has a unique solution on H(} N H and the respective TPS constitutes a
Co-semi-group of quasi-contractions on Cy. Furthermore, there exists a unique Markov solution (Py),, HINH of the
corresponding martingale problem.

Proof. Let W(u) := cV(u)|Aul? if u € Hj N H?, and W = +o0 else. Let H, be the linear hull of the first n eigen-
vectors of A, V,,(u) := V(P,u) and i, (1) := Pypu(Pou), n € N. Then |Pop(u) — pn ()| < 2|u||Vu| < ¢|Aul?. So
Hypothesis 2(a)—(b) and Hypothesis 3(a)—(b) readily follow.

Note that foru,&,ne HN HO1 N H?2

D}V
Dg,V(u) =—2x(Au,§), i; () = 4> (Au, &) (Au, n) — 2x (A&, n),
<Au, P(u- Vu)) = /(curlu) curl P(u - Vu)ds = /(curlu)(u -Vecurlu)ds =0.
Q Q
So
LnVn

() = —2xv|Aul + 252 |o* @) Au|* + x|o* ) (= A) 2],

V, (H)

< —2x(v —xsuplo )|, ) 1Au? + C. (10)
u
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So Hypothesis 3(c) follows. Furthermore, for u, w € Hy N H> N H,

<u—w,P(u~Vu)—P(w-Vw)):/(u—w)'(u‘Vu—quw)ds
Q

=/(u—w)~((u—w)-Vu)ds,
Q

since [ (u —w) - (w-V(u—w))ds = %fg w-Viu—wrds =0.
So, [{u — w, P(u-Vu) — P(w - Vw))| < |Aul|(—=A) "2 |u — w?| < c|Aullu — w|?.
Hence, for any »x, ¢ > 0,

5 {n ) — pn (W), u — w)
imsup

Hy, sw—u lu —w|?

< 2}{8|Au|2 + i.
xe
Now, using (10) it is easy to verify (9) and thus Hypothesis 2(c) holds. O
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