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Abstract

In this Note we present a new approach to solve Kolmogorov equations in infinitely many variables in weighted spaces of
weakly continuous functions, including the case of non-constant possibly degenerate diffusion coefficients. To cite this article:
M. Röckner, Z. Sobol, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une nouvelle approche dans une infinité de dimensions et applications à l’équation Navier–Stokes stochastique en 2D.
Dans cette Note nous présentons une nouvelle approche pour résoudre des équations de Kolmogorov à une infinité de variables
dans des espaces à poids de fonctions faiblement continus. Le cas de coéfficients de diffusion non-constants et éventuellement
dégénérés est inclus. Pour citer cet article : M. Röckner, Z. Sobol, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

The purpose of this Note is to present a new general approach to Kolmogorov equations in infinite dimensions
based on the methods first developed in [2]. We illustrate this approach through its application to the stochastic 2D
Navier–Stokes equations (NSE, see [1] and the references therein) with state dependent (‘multiplicative’) noise, which
on an open set Ω ⊆ R

d or Ω = T
d is given by

∂

∂t
u + u · ∇u = ν�u − ∇p + f, divu = 0, u �∂Ω= 0, u(x,0) = u0(x). (1)

Here u(t, x) ∈ R
2 is the velocity of a fluid in x ∈ Ω at time t � 0, p(t, x) the pressure, f (t, x) an external stochastic

force and ν the viscosity constant. We consider the Laplacian with Dirichlet and periodic boundary conditions.
As usual we project (1) onto the sub-space H ⊂ L2(Ω → R

2) of divergence free vector fields by the Leray–
Helmholtz projection P . Then the SPDE (1) becomes an SDE in H .

To describe the stochastic force f precisely, let {�k}∞k=1 be the eigenbasis of the part of � on H and let {wk
t }∞k=1

be a sequence of iid Brownian motions with Ft := σ {wk
t | 0 � s � t, k = 1,2,3, . . .} its associated filtration. If σ is an

(Ft )-adapted locally bounded separable process taking values in the space L2(H) of Hilbert–Schmidt operators on
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H , the series
∑

k

∫ t

0 σ�k dwk
t converges in H almost surely. We denote the differential of the latter process by σ dwt

and set f = σ(u)dwt

dt
, with a continuous map σ :H → L2(H), i.e. we allow σ to depend on the solution. Thus, (1)

turns into the following SDE in H :

dut = [
ν�ut − P(ut · ∇ut )

]
dt + σ(ut )dwt . (2)

The usual way to obtain the Kolmogorov equations corresponding to SDE (2) is to reformulate the latter as a
martingale problem, which is a standard approach to construct weak solutions to an SDE of type

dut = μ(ut )dt + σ(ut )dwt (3)

(cf. Stroock and Varadhan in [5] if H = R
d ): Let D be the set of all cylindrical functions of type

Φ(u) = φ
(〈�1, u〉, 〈�2, u〉, . . . , 〈�n,u〉), n ∈ N, φ ∈ C2

b

(
R

n
)
. (4)

Itô’s formula applied to Φ(ut ), with ut solving (3), yields that

mΦ(t) := Φ(ut ) − Φ(u0) −
t∫

0

(LΦ)(us)ds, (5)

is an (Ft )-martingale, with the Kolmogorov operator L defined as follows:

LΦ(u) = 1

2

∑
km

〈
σ(u)�k, σ (u)�m

〉∂2Φ(u)

∂�k∂�m

+
∑

k

μk(u)
∂Φ(u)

∂�k

, Φ ∈D, (6)

where in the special case of (2)

μk(u) := 〈
�k,μ(u)

〉 = 〈ν��k,u〉 + 〈u · ∇�k, u〉, k ∈ N.

Then a solution to the martingale problem (L,D) is a family of measures (Pu)u∈H on C([0,∞),H), i.e. the space
of continuous trajectories in H such that, for u ∈ H , first, Pu{u0 = u} = 1, and second, for Φ ∈ D, the process mΦ is
a Pu-martingale with respect to the standard filtration on C([0,∞),H).

We confine ourselves to Markov solutions, i.e. (Pu)u∈H form a Markov process. Then it suffices to construct the
transition probability semigroup (TPS), i.e. a semi-group of Markov kernels pt(u,dv) on H such that

ptΦ(u) − Φ(u) =
t∫

0

ps(LΦ)(u)ds, t > 0,Φ ∈ D, (7)

which is obtained from (5) by taking expectation. (7) as equations in the unknown measures ps(u,dv) are called
Kolmogorov equations and by construction can be considered as a linearization of (3).

A purely analytic method of solving (7) was introduced in [2] and then developed in [3] (see also [4]). Its main
point is the construction of the TPS pt as a semi-group Pt of Markov operators on

CV :=
{
f : {V < ∞} → R |

f �{V�R} is weakly continuous ∀R > 0 and lim
R→∞ sup

{V�R}
V

−1|f | = 0
}
, (8)

V : H → [0,∞] being a Lyapunov function for L, i.e. V is of compact level sets, such that (λ − L)V > 0.
To state our result precisely, let us consider the SDE (3) on an abstract separable Hilbert space H . Let Hn ⊂ Hn+1 ⊂

H , be an increasing sequence of finite dimensional subspaces of H , H∞ := ⋃
Hn be dense in H , Pn : H → Hn be

the corresponding orthogonal projections.

Hypothesis 1. The noise σ :H → L2(H) is Lipschitz continuous and has block diagonal structure, that is, there exists
a sequence Nn → ∞ such that PNnσ (u) = PNnσ (PNnu) for all u ∈ H .

Hypothesis 2. Let Nn → ∞ be as in Hypothesis 1, σn(u) := PNnσ (u) = PNnσ (PNnu). For all n ∈ N, there exist
μn ∈ C(H → HNn), and Vn ∈ C2(H), μn(u) = μn(PNnu), Vn(u) = Vn(PNnu) for all u ∈ H , such that
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(a) Vn > 0;
(b) supu,w∈HNn,u �=w, |u|,|w|�R

〈μn(u)−μn(w),u−w〉
|u−w|2 < ∞;

(c) There exists λ ∈ R independent of n such that, for a.a. u ∈ HNn ,

lim sup
HNn�w→u

〈μn(u) − μn(w),u − w〉
|u − w|2 + sup

ξ∈HNn,|ξ |=1
|Dξσn|2L2

(u)

+ sup
ξ∈HNn,|ξ |=1

〈
Dξσ

∗
n (x)ξ, σ ∗

n

DVn

Vn

〉
(u) + LnVn

Vn

(u) � λ, (9)

where Ln on C2(HNn) is given by (6) with μn, σn replacing σ and μ, respectively.

Hypothesis 3. Let Nn → ∞ be as in Hypothesis 1, and μn,Vn,Ln be as in Hypothesis 2. There are positive functions
V,W of compact level sets, finite on H∞, such that

(a) Vn,V ∈ CW (the latter is defined as in (8)) and Vn → V in CW as n → ∞;
(b) For all u ∈ {W < ∞}, μ(u) is defined, |μn − PNnμ|(u) � cW

V
(u) and |μn − PNnμ|(u) → 0 as n → ∞;

(c) lim supn→∞ infu∈HNn

(λ∗−Ln)Vn

W
(u) � 1 for some λ∗ ∈ R.

The following theorem is our main result in [3]. To the best of our knowledge it is the first result on solving the
Kolmogorov equations (7) purely analytically for all points u in an explicitly specified subspace of H and with a
non-constant possibly degenerate diffusion matrix in the second order part of L.

Theorem 4. Let Hypotheses 1–3 hold. Then there exists a unique solution to (7) on {V < ∞} and the TPS constitutes a
C0-semi-group of quasi-contractions on CV. Furthermore, there exists a unique Markov solution (Pu)u∈{V<∞} of (5).

We now apply Theorem 4 to the 2D NSE (2). Let H be the sub-space of L2(Ω → R
2) consisting of all divergence

free vector fields, let H 1
0 := H 1

0 (Ω → R
2) (note that H 1

0 = H 1 if Ω = T
2), H 2 := H 2(Ω → R

2) and let μ(u) :=
ν�u − P(u · ∇u) for u ∈ H 1

0 ∩ H 2.

Theorem 5. Let σ :H → L2(H,H 1
0 ) be bounded, satisfying Hypothesis 1.

Moreover, let V(u) = V�(u) = e�|∇u|2 for � < ν/ supu |σ(u)|2H→H .
Then (7) for L with μ and σ as above has a unique solution on H 1

0 ∩ H and the respective TPS constitutes a
C0-semi-group of quasi-contractions on CV. Furthermore, there exists a unique Markov solution (Pu)u∈H 1

0 ∩H of the
corresponding martingale problem.

Proof. Let W(u) := cV(u)|�u|2 if u ∈ H 1
0 ∩ H 2, and W ≡ +∞ else. Let Hn be the linear hull of the first n eigen-

vectors of �, Vn(u) := V(Pnu) and μn(u) := Pnμ(Pnu), n ∈ N. Then |Pnμ(u) − μn(u)| � 2|u||∇u| � c|�u|2. So
Hypothesis 2(a)–(b) and Hypothesis 3(a)–(b) readily follow.

Note that for u, ξ, η ∈ H ∩ H 1
0 ∩ H 2

DξV

V
(u) = −2�〈�u,ξ 〉, D2

ξηV

V
(u) = 4�2〈�u,ξ 〉〈�u,η〉 − 2�〈�ξ,η〉,

〈
�u,P (u · ∇u)

〉 =
∫
Ω

(curlu) curlP(u · ∇u)ds =
∫
Ω

(curlu)(u · ∇ curlu)ds = 0.

So

LnVn

Vn

(u) = −2�ν|�u|2 + 2�2
∣∣σ ∗(u)�u

∣∣2 + �
∣∣σ ∗(u)(−�)1/2

∣∣2
L2(H)

� −2�
(
ν − � sup

∣∣σ(u)
∣∣2
H→H

)|�u|2 + C. (10)

u
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So Hypothesis 3(c) follows. Furthermore, for u,w ∈ H 1
0 ∩ H 2 ∩ H ,

〈
u − w,P (u · ∇u) − P(w · ∇w)

〉 =
∫
Ω

(u − w) · (u · ∇u − w · ∇w)ds

=
∫
Ω

(u − w) · ((u − w) · ∇u
)

ds,

since
∫
Ω

(u − w) · (w · ∇(u − w))ds = 1
2

∫
Ω

w · ∇|u − w|2 ds = 0.

So, |〈u − w,P (u · ∇u) − P(w · ∇w)〉| � |�u||(−�)−1/2|u − w|2| � c|�u||u − w|2.
Hence, for any �, ε > 0,

lim sup
HNn�w→u

〈μn(u) − μn(w),u − w〉
|u − w|2 � 2�ε|�u|2 + c

�ε
.

Now, using (10) it is easy to verify (9) and thus Hypothesis 2(c) holds. �
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