

Available online at www.sciencedirect.com

COMPTES RENDUS MATHEMATIQUE

C. R. Acad. Sci. Paris, Ser. I 345 (2007) 381-384

http://france.elsevier.com/direct/CRASS1/

Partial Differential Equations

High frequency periodic solutions of semilinear equations

Geneviève Allain^a, Anne Beaulieu^b

^a Laboratoire d'analyse et de mathématiques appliquées, Université Paris-Est, UMR CNRS 8050, Faculté de sciences et technologie,

61, avenue du Général-de-Gaulle, 94010 Créteil cedex, France

^b Laboratoire d'analyse et de mathématiques appliquées, Université Paris-Est, UMR CNRS 8050, 5, boulevard Descartes,

77454 Marne-la-Vallée cedex 2, France

Received 18 March 2007; accepted after revision 18 July 2007

Available online 20 September 2007

Presented by Haïm Brezis

Abstract

We are interested with positive solutions of $-\varepsilon^2 \Delta u + f(u) = 0$ in $S^1 \times \mathbb{R}$, i.e. periodic solutions in the first coordinate x_1 . The model function for f is $f(u) = u - u^p$, p > 1. We prove that for ε large enough, any positive solution is a function of the second coordinate only. *To cite this article: G. Allain, A. Beaulieu, C. R. Acad. Sci. Paris, Ser. I 345 (2007).* © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Solutions périodiques de haute fréquence d'équations semi-linéaires. On s'intéresse aux solutions positives de $-\varepsilon^2 \Delta u + f(u) = 0$ dans $S^1 \times \mathbb{R}$, c'est-à-dire aux solutions périodiques en x_1 , la première coordonnée. Le cas modèle est $f(u) = u - u^p$, p > 1. Nous prouvons que, pour ε suffisamment grand, toute solution positive est une fonction de x_2 seulement. *Pour citer cet article : G. Allain, A. Beaulieu, C. R. Acad. Sci. Paris, Ser. I 345 (2007).*

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let $N \ge 2$. Under some conditions on f, following Kwong and Zhang, [9], there exists a ground-state solution w_0 , that is a radial positive solution, of

$$-\Delta u + f(u) = 0 \quad \text{in } \mathbb{R}^{N-1}.$$
⁽¹⁾

Dancer, [5], studied the bifurcation of solutions, which are periodic in one variable, of

$$-\varepsilon^2 \Delta u + f(u) = 0 \quad \text{in } S^1 \times \mathbb{R}^{N-1} \tag{2}$$

around $w_{\varepsilon}(x_1, x') = w_0(\frac{x'}{\varepsilon})$, which is seen as a bounded solution in \mathbb{R}^N , depending only on N - 1 variables. There exists a sequence (ε_j) of positive parameters, with $\varepsilon_j = \varepsilon_0/(j+1)$ for $j \in \mathbb{N}$, such that there is a curve of positive solutions of (2) in $L^{\infty}(\mathbb{R}^N)$ which are 2π -periodic in x_1 , and decay to zero, uniformly in x_1 , as $|x'| \to \infty$ and which

E-mail addresses: allain@univ-paris12.fr (G. Allain), anne.beaulieu@univ-mlv.fr (A. Beaulieu).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2007.07.010

bifurcate from w_{ε_j} . We could ask whether w_{ε} is the only positive bounded periodic solution of (2) for $\varepsilon > \varepsilon_0$. In all what follows we suppose that N = 2 and we give a partial answer to this question in this case.

The model function for f is $f(u) = u - u^p$, p > 1, but we give more general assumptions for a continuous function f:

There exists $s_0 > 0$ such that f is non-decreasing in $[0, s_0]$. (3)

(4)

$$f(0) = 0$$
 and $f'(0)$ exists.

There exists p > 1 and K > 0 such that for any $u > 0, -Ku^p \leq f(u) - f'(0)u < 0.$ (5)

Theorem 1.1. Let f be a C^1 function in \mathbb{R}^+ , that satisfies the hypotheses (3), (4) and (5), such that f' is decreasing in \mathbb{R}^+ , f has a maximum for some c > 0 and f'' exists and is continuous, except in isolated points of \mathbb{R}^+ . Then there exists $\overline{\varepsilon} > 0$ such that for $\varepsilon > \overline{\varepsilon}$ any positive solution of (2) that tends to 0 as $|x_2|$ tends to infinity, uniformly in $x_1 \in S^1$, can only be a function of the variable x_2 .

Therefore, when $f(u) = u - u^p$, p > 1, for $\varepsilon > \overline{\varepsilon}$, the solutions are the null solution and the functions $w_0(\frac{x_2}{\varepsilon})$, and the functions obtained by translation from these. Since the conjecture of De Giorgi, (see [1]), several authors ([6,1,3], ...) have proved that the solution of some other semilinear elliptic equations on \mathbb{R}^N depends only on one variable.

2. Some properties of solutions

Theorem 2.1. Let f be a function that verifies (3) and (4). Let $(x_1, x_2) \mapsto u(x_1, x_2)$ be a positive solution of (2) that tends to 0 as x_2 tends to infinity, uniformly in $x_1 \in S^1$. Then there exists $t_0 \in \mathbb{R}$ such that $u(x_1, t_0 - x_2) = u(x_1, t_0 + x_2)$ for all $(x_1, x_2) \in S^1 \times \mathbb{R}$ and u decreases with respect to x_2 for $x_2 \ge t_0$.

The proof of this theorem is similar to [2]. It uses the moving plane method like [7,4].

Theorem 2.2. Let f be a function that verifies (3), (4) and (5). Then for all $\varepsilon > 0$, there exists C > 0, depending only on ε , f'(0) and p, and decreasing with respect ε , such that if u is any positive solution of (2) that satisfies the hypotheses of Theorem 1.1 and that is even in x_2 , we have

$$\sup_{S^1 \times \mathbb{R}^+} u \leqslant C \left(\inf_{S^1 \times \{0\}} u + \frac{K}{\varepsilon^2} \inf_{S^1 \times \{0\}} u^p \right).$$
(6)

Proof. The claim follows from the Harnack inequalities. First, we apply Theorem 8.17 of [8] with $Lu = \Delta u$ and the equation $Lu = \frac{1}{\varepsilon^2} f(u)$ and $R = \pi$. We get for all n > 1 and all q > 2 a constant *C* that depends on *n* and *q*, such that for all positive solution *u* and all $\varepsilon > 0$ we have

$$\sup_{B_{R}(0)} u \leq C \left(R^{-\frac{2}{n}} \|u\|_{L^{n}(B_{2R}(0))} + \frac{1}{\varepsilon^{2}} R^{2-\frac{4}{q}} \left(\int_{B_{2R}(0)} \left(f'(0)u + Ku^{p} \right)^{\frac{q}{2}} \right)^{\frac{2}{q}} \right).$$
(7)

that gives

$$\sup_{B_{R}(0)} u \leq C \left(R^{-\frac{2}{n}} \| u \|_{L^{n}(B_{2R}(0))} + \frac{1}{\varepsilon^{2}} R^{\frac{-4}{q}} \left(\| u \|_{L^{\frac{q}{2}}(B_{2R}(0))} + K \| u \|_{L^{\frac{pq}{2}}(B_{2R}(0))}^{p} \right) \right)$$
(8)

where *C* depends only on *q* and *n*. Now we apply Theorem 8.18 of [8] for $Lu = \varepsilon^2 \Delta u - f'(0)u$, the equation $Lu \le 0$ and $R = \pi$. We get a constant C > 0, that depends on *n* and on $\frac{R}{\varepsilon}$ such that for all non-negative *u* satisfying $Lu \le 0$ we have

$$R^{-\frac{2}{n}} \|u\|_{L^{n}(B_{2R}(0))} \leq C \inf_{B_{R}(0)} u.$$
(9)

But the constant *C* is a decreasing function of ε . Indeed, if $\varepsilon_1 < \varepsilon_2$ and if $\varepsilon_2^2 \Delta u - f'(0)u \leq 0$, then $\varepsilon_1^2 \Delta u - f'(0)u \leq 0$. So, if $C(\varepsilon_1)$ and $C(\varepsilon_2)$ are the best constants in (9), respectively for ε_1 and ε_2 , we have $C(\varepsilon_2) \leq C(\varepsilon_1)$. On the other hand we have $\sup_{B_R(0)} u = \sup_{S^1 \times \mathbb{R}^+} u$ and $\inf_{B_R(0)} u \leq \inf_{S^1 \times \mathbb{R}^+} u$. Combining (8) and (9), we get (6).

3. Proof of Theorem 1.1

We may suppose that u is even in x_2 and consequently that $\frac{\partial u}{\partial x_2}(x_1, 0) = 0$ for all $x_1 \in S^1$. Let us define $\Psi(x_2) = \frac{1}{2\pi} \int_0^{2\pi} u(x_1, x_2) dx_1$. Integrating (2) on $[0, 2\pi]$ we obtain

$$-\varepsilon^2 \Psi''(x_2) + \frac{1}{2\pi} \int_{0}^{2\pi} f(u) \, \mathrm{d}x_1 = 0$$

The hypotheses on f give

$$-\varepsilon^2 \Psi''(x_2) \ge -f(\Psi(x_2))$$

By the decaying property of u in x_2 , we have that $\Psi'(x_2) < 0$. Multiplying by Ψ' , integrating on $[0, +\infty[$ and using the Neumann condition on u we get

$$F(\Psi(0)) \geqslant 0,\tag{10}$$

where $F(u) = \int_0^u f(t) dt$. It follows from the assumptions on f that F tends to $-\infty$ when u tends to $+\infty$. Let C_{\star} be such that F(u) is non-positive for $u > C_{\star}$. We have

$$\Psi(0) \leqslant C_{\star},\tag{11}$$

that leads to $\inf_{x_1 \in S^1} u(x_1, 0) \leq C_{\star}$ and then, thanks to (6), for $\varepsilon \geq \varepsilon_1$, where $\varepsilon_1 > 0$ is given, we have

$$\sup_{1 \times \mathbb{R}^+} u \leqslant C, \tag{12}$$

where *C* depends on ε_1 and is valid for any solution *u* of (2). Now we multiply (2) by $\frac{\partial u}{\partial x_2}$ and we integrate on $S^1 \times \mathbb{R}_+$. We obtain

$$\frac{\varepsilon^2}{2} \int_0^{2\pi} \left(\frac{\partial u}{\partial x_1}(x_1,0)\right)^2 \mathrm{d}x_1 + \int_0^{2\pi} F(u(x_1,0)) \,\mathrm{d}x_1 = 0.$$
(13)

Using (10) we get

S

$$\frac{\varepsilon^2}{2} \int_0^{2\pi} \left(\frac{\partial u}{\partial x_1}\right)^2 (x_1, 0) \, \mathrm{d}x_1 \leqslant \int_0^{2\pi} \left(-F\left(u(x_1, 0)\right) + F\left(\Psi(0)\right)\right) \, \mathrm{d}x_1,$$

that leads to

$$\frac{\varepsilon^2}{2} \int_0^{2\pi} \left(\frac{\partial u}{\partial x_1}\right)^2 (x_1, 0) \, \mathrm{d}x_1 \leqslant -\int_0^{2\pi} \left(F\left(u(x_1, 0)\right) - F\left(\Psi(0)\right) - \left(u(x_1, 0) - \Psi(0)\right)f\left(\Psi(0)\right)\right) \, \mathrm{d}x_1.$$
(14)

However, by (11) and (12), given $\varepsilon_1 > 0$, there exists M > 0 such that $|f'(v)| \leq M$ for all v between $\Psi(0)$ and $u(x_1, 0), x_1 \in S^1$. Thus we have, for all $x_1 \in S^1$ and for all $\varepsilon > \varepsilon_1$,

$$\left|F(u(x_1,0)) - F(\Psi(0)) - (u(x_1,0) - \Psi(0))f(\Psi(0))\right| \le M \left|u(x_1,0) - \Psi(0)\right|^2.$$
(15)

On the other hand the Poincaré inequality gives

$$\int_{0}^{2\pi} \left(u(x_1, 0) - \Psi(0) \right)^2 \mathrm{d}x_1 \leqslant 4\pi^2 \int_{0}^{2\pi} \left(\frac{\partial u}{\partial x_1} \right)^2 (x_1, 0) \, \mathrm{d}x_1.$$
(16)

We deduce from (14)–(16) that there exists C > 0 such that for all $\varepsilon > \varepsilon_1$,

$$\frac{\varepsilon^2}{2} \int_0^{2\pi} \left(u(x_1, 0) - \Psi(0) \right)^2 \mathrm{d}x_1 \leqslant C \int_0^{2\pi} \left(u(x_1, 0) - \Psi(0) \right)^2 \mathrm{d}x_1.$$

This inequality gives that there exists $\bar{\varepsilon} > 0$ such that for $\varepsilon > \bar{\varepsilon}$ any solution of (2) verifies $\frac{\partial u}{\partial x_1}(x_1, 0) = 0$, for all $x_1 \in [0, 2\pi]$. Let us prove that such a solution verifies in fact $\frac{\partial u}{\partial x_1}(x_1, x_2) = 0$, for all $x_1 \in [0, 2\pi]$ and for all $x_2 \in [0, +\infty[$. As *f* is twice differentiable in $]0, +\infty[$, except at isolated points, we may argue as follows. By derivation of (2) we get

$$-\varepsilon^2 \Delta \frac{\partial u}{\partial x_1} + f'(u) \frac{\partial u}{\partial x_1} = 0.$$
⁽¹⁷⁾

Then we multiply this equation by $\frac{\partial^2 u}{\partial x_1 \partial x_2}$ and we integrate on $S^1 \times \mathbb{R}+$. We obtain

$$\int_{0}^{+\infty} \int_{0}^{2\pi} f''(u) \frac{\partial u}{\partial x_2} \left(\frac{\partial u}{\partial x_1}\right)^2 dx_1 dx_2 = 0.$$

However, f is concave and u decreases with respect to x_2 , so we have $\frac{\partial u}{\partial x_1} = 0$ in $S^1 \times \mathbb{R}+$.

Remark 1. For N > 2, the positive solutions of (2) are radially symmetric and decreasing in $r = |(x_2, ..., x_N)|$. But our above proof does not work for x_2 replaced by r. In this case we are unable to prove (10) because the equation for ψ is not the same one.

Acknowledgement

We thank Y. Ge for helpful discussions about this work.

References

- [1] G. Alberti, L. Ambrosio, X. Cabré, On a long-standing conjecture of E. De Giorgi: old and recent results, Acta Appl. Math. 65 (2001) 9–33.
- [2] L. Almeida, L. Damascelli, Y. Ge, A few symmetry results for nonlinear elliptic PDE on noncompact manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (3) (2002) 313–342.
- [3] H. Berestycki, F. Hamel, R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J. 103 (3) (2000) 375–396.
- [4] H. Berestycki, L. Nirenberg, On the method of moving plane and the sliding method, Bol. Soc. Bras. Mat. 22 (1991) 1–39.
- [5] E.N. Dancer, New solutions of equations on \mathbb{R}^n , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) XXX (2001) 535–563.
- [6] N. Ghoussoub, C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann. 311 (1998) 481-491.
- [7] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rⁿ, in: Mathematical Analysis and Applications, Part A, in: Adv. Math. Suppl. Studies, vol. 7A, Academic Press, New York, 1981, pp. 369–402.
- [8] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, second ed., Springer-Verlag, Berlin, 1983.
- [9] M.K. Kwong, L. Zhang, Uniqueness of the positive solution of $\Delta u + f(u) = 0$ in an annulus, Differential Integral Equations 4 (1991) 583–599.