Partial Differential Equations

High frequency periodic solutions of semilinear equations

Geneviève Allain ${ }^{\text {a }}$, Anne Beaulieu ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratoire d'analyse et de mathématiques appliquées, Université Paris-Est, UMR CNRS 8050, Faculté de sciences et technologie, 61, avenue du Général-de-Gaulle, 94010 Créteil cedex, France
${ }^{\text {b }}$ Laboratoire d'analyse et de mathématiques appliquées, Université Paris-Est, UMR CNRS 8050, 5, boulevard Descartes, 77454 Marne-la-Vallée cedex 2, France

Received 18 March 2007; accepted after revision 18 July 2007
Available online 20 September 2007
Presented by Haïm Brezis

Abstract

We are interested with positive solutions of $-\varepsilon^{2} \Delta u+f(u)=0$ in $S^{1} \times \mathbb{R}$, i.e. periodic solutions in the first coordinate x_{1}. The model function for f is $f(u)=u-u^{p}, p>1$. We prove that for ε large enough, any positive solution is a function of the second coordinate only. To cite this article: G. Allain, A. Beaulieu, C. R. Acad. Sci. Paris, Ser. I 345 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Solutions périodiques de haute fréquence d'équations semi-linéaires. On s'intéresse aux solutions positives de $-\varepsilon^{2} \Delta u+$ $f(u)=0$ dans $S^{1} \times \mathbb{R}$, c'est-à-dire aux solutions périodiques en x_{1}, la première coordonnée. Le cas modèle est $f(u)=u-u^{p}$, $p>1$. Nous prouvons que, pour ε suffisamment grand, toute solution positive est une fonction de x_{2} seulement. Pour citer cet article: G. Allain, A. Beaulieu, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let $N \geqslant 2$. Under some conditions on f, following Kwong and Zhang, [9], there exists a ground-state solution w_{0}, that is a radial positive solution, of

$$
\begin{equation*}
-\Delta u+f(u)=0 \quad \text { in } \mathbb{R}^{N-1} \tag{1}
\end{equation*}
$$

Dancer, [5], studied the bifurcation of solutions, which are periodic in one variable, of

$$
\begin{equation*}
-\varepsilon^{2} \Delta u+f(u)=0 \quad \text { in } S^{1} \times \mathbb{R}^{N-1} \tag{2}
\end{equation*}
$$

around $w_{\varepsilon}\left(x_{1}, x^{\prime}\right)=w_{0}\left(\frac{x^{\prime}}{\varepsilon}\right)$, which is seen as a bounded solution in \mathbb{R}^{N}, depending only on $N-1$ variables. There exists a sequence (ε_{j}) of positive parameters, with $\varepsilon_{j}=\varepsilon_{0} /(j+1)$ for $j \in \mathbb{N}$, such that there is a curve of positive solutions of (2) in $L^{\infty}\left(\mathbb{R}^{N}\right)$ which are 2π-periodic in x_{1}, and decay to zero, uniformly in x_{1}, as $\left|x^{\prime}\right| \rightarrow \infty$ and which

[^0]bifurcate from $w_{\varepsilon_{j}}$. We could ask whether w_{ε} is the only positive bounded periodic solution of (2) for $\varepsilon>\varepsilon_{0}$. In all what follows we suppose that $N=2$ and we give a partial answer to this question in this case.

The model function for f is $f(u)=u-u^{p}, p>1$, but we give more general assumptions for a continuous function f :

There exists $s_{0}>0$ such that f is non-decreasing in $\left[0, s_{0}\right]$.

$$
\begin{equation*}
f(0)=0 \text { and } f^{\prime}(0) \text { exists. } \tag{3}
\end{equation*}
$$

There exists $p>1$ and $K>0$ such that for any $u>0,-K u^{p} \leqslant f(u)-f^{\prime}(0) u<0$.
Theorem 1.1. Let f be a C^{1} function in \mathbb{R}^{+}, that satisfies the hypotheses (3), (4) and (5), such that f^{\prime} is decreasing in \mathbb{R}^{+}, f has a maximum for some $c>0$ and $f^{\prime \prime}$ exists and is continuous, except in isolated points of \mathbb{R}^{+}. Then there exists $\bar{\varepsilon}>0$ such that for $\varepsilon>\bar{\varepsilon}$ any positive solution of (2) that tends to 0 as $\left|x_{2}\right|$ tends to infinity, uniformly in $x_{1} \in S^{1}$, can only be a function of the variable x_{2}.

Therefore, when $f(u)=u-u^{p}, p>1$, for $\varepsilon>\bar{\varepsilon}$, the solutions are the null solution and the functions $w_{0}\left(\frac{x_{2}}{\varepsilon}\right)$, and the functions obtained by translation from these. Since the conjecture of De Giorgi, (see [1]), several authors $([6,1,3], \ldots)$ have proved that the solution of some other semilinear elliptic equations on \mathbb{R}^{N} depends only on one variable.

2. Some properties of solutions

Theorem 2.1. Let f be a function that verifies (3) and (4). Let $\left(x_{1}, x_{2}\right) \mapsto u\left(x_{1}, x_{2}\right)$ be a positive solution of (2) that tends to 0 as x_{2} tends to infinity, uniformly in $x_{1} \in S^{1}$. Then there exists $t_{0} \in \mathbb{R}$ such that $u\left(x_{1}, t_{0}-x_{2}\right)=u\left(x_{1}, t_{0}+x_{2}\right)$ for all $\left(x_{1}, x_{2}\right) \in S^{1} \times \mathbb{R}$ and u decreases with respect to x_{2} for $x_{2} \geqslant t_{0}$.

The proof of this theorem is similar to [2]. It uses the moving plane method like [7,4].

Theorem 2.2. Let f be a function that verifies (3), (4) and (5). Then for all $\varepsilon>0$, there exists $C>0$, depending only on $\varepsilon, f^{\prime}(0)$ and p, and decreasing with respect ε, such that if u is any positive solution of (2) that satisfies the hypotheses of Theorem 1.1 and that is even in x_{2}, we have

$$
\begin{equation*}
\sup _{S^{1} \times \mathbb{R}^{+}} u \leqslant C\left(\inf _{S^{1} \times\{0\}} u+\frac{K}{\varepsilon^{2}} \inf _{S^{1} \times\{0\}} u^{p}\right) . \tag{6}
\end{equation*}
$$

Proof. The claim follows from the Harnack inequalities. First, we apply Theorem 8.17 of [8] with $L u=\Delta u$ and the equation $L u=\frac{1}{\varepsilon^{2}} f(u)$ and $R=\pi$. We get for all $n>1$ and all $q>2$ a constant C that depends on n and q, such that for all positive solution u and all $\varepsilon>0$ we have

$$
\begin{equation*}
\sup _{B_{R}(0)} u \leqslant C\left(R^{-\frac{2}{n}}\|u\|_{L^{n}\left(B_{2 R}(0)\right)}+\frac{1}{\varepsilon^{2}} R^{2-\frac{4}{q}}\left(\int_{B_{2 R}(0)}\left(f^{\prime}(0) u+K u^{p}\right)^{\frac{q}{2}}\right)^{\frac{2}{q}}\right) . \tag{7}
\end{equation*}
$$

that gives
where C depends only on q and n. Now we apply Theorem 8.18 of [8] for $L u=\varepsilon^{2} \Delta u-f^{\prime}(0) u$, the equation $L u \leqslant 0$ and $R=\pi$. We get a constant $C>0$, that depends on n and on $\frac{R}{\varepsilon}$ such that for all non-negative u satisfying $L u \leqslant 0$ we have

$$
\begin{equation*}
R^{-\frac{2}{n}}\|u\|_{L^{n}\left(B_{2 R}(0)\right)} \leqslant C \inf _{B_{R}(0)} u \tag{9}
\end{equation*}
$$

But the constant C is a decreasing function of ε. Indeed, if $\varepsilon_{1}<\varepsilon_{2}$ and if $\varepsilon_{2}^{2} \Delta u-f^{\prime}(0) u \leqslant 0$, then $\varepsilon_{1}^{2} \Delta u-f^{\prime}(0) u \leqslant 0$. So, if $C\left(\varepsilon_{1}\right)$ and $C\left(\varepsilon_{2}\right)$ are the best constants in (9), respectively for ε_{1} and ε_{2}, we have $C\left(\varepsilon_{2}\right) \leqslant C\left(\varepsilon_{1}\right)$. On the other hand we have $\sup _{B_{R}(0)} u=\sup _{S^{1} \times \mathbb{R}+} u$ and $\inf _{B_{R}(0)} u \leqslant \inf _{S^{1} \times \mathbb{R}+} u$. Combining (8) and (9), we get (6).

3. Proof of Theorem 1.1

We may suppose that u is even in x_{2} and consequently that $\frac{\partial u}{\partial x_{2}}\left(x_{1}, 0\right)=0$ for all $x_{1} \in S^{1}$. Let us define $\Psi\left(x_{2}\right)=$ $\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(x_{1}, x_{2}\right) \mathrm{d} x_{1}$. Integrating (2) on $[0,2 \pi]$ we obtain

$$
-\varepsilon^{2} \Psi^{\prime \prime}\left(x_{2}\right)+\frac{1}{2 \pi} \int_{0}^{2 \pi} f(u) \mathrm{d} x_{1}=0
$$

The hypotheses on f give

$$
-\varepsilon^{2} \Psi^{\prime \prime}\left(x_{2}\right) \geqslant-f\left(\Psi\left(x_{2}\right)\right)
$$

By the decaying property of u in x_{2}, we have that $\Psi^{\prime}\left(x_{2}\right)<0$. Multiplying by Ψ^{\prime}, integrating on $[0,+\infty[$ and using the Neumann condition on u we get

$$
\begin{equation*}
F(\Psi(0)) \geqslant 0, \tag{10}
\end{equation*}
$$

where $F(u)=\int_{0}^{u} f(t) \mathrm{d} t$. It follows from the assumptions on f that F tends to $-\infty$ when u tends to $+\infty$. Let C_{\star} be such that $F(u)$ is non-positive for $u>C_{\star}$. We have

$$
\begin{equation*}
\Psi(0) \leqslant C_{\star}, \tag{11}
\end{equation*}
$$

that leads to $\inf _{x_{1} \in S^{1}} u\left(x_{1}, 0\right) \leqslant C_{\star}$ and then, thanks to (6), for $\varepsilon \geqslant \varepsilon_{1}$, where $\varepsilon_{1}>0$ is given, we have

$$
\begin{equation*}
\sup _{S^{1} \times \mathbb{R}^{+}} u \leqslant C, \tag{12}
\end{equation*}
$$

where C depends on ε_{1} and is valid for any solution u of (2). Now we multiply (2) by $\frac{\partial u}{\partial x_{2}}$ and we integrate on $S^{1} \times \mathbb{R}_{+}$. We obtain

$$
\begin{equation*}
\frac{\varepsilon^{2}}{2} \int_{0}^{2 \pi}\left(\frac{\partial u}{\partial x_{1}}\left(x_{1}, 0\right)\right)^{2} \mathrm{~d} x_{1}+\int_{0}^{2 \pi} F\left(u\left(x_{1}, 0\right)\right) \mathrm{d} x_{1}=0 . \tag{13}
\end{equation*}
$$

Using (10) we get

$$
\frac{\varepsilon^{2}}{2} \int_{0}^{2 \pi}\left(\frac{\partial u}{\partial x_{1}}\right)^{2}\left(x_{1}, 0\right) \mathrm{d} x_{1} \leqslant \int_{0}^{2 \pi}\left(-F\left(u\left(x_{1}, 0\right)\right)+F(\Psi(0))\right) \mathrm{d} x_{1}
$$

that leads to

$$
\begin{equation*}
\frac{\varepsilon^{2}}{2} \int_{0}^{2 \pi}\left(\frac{\partial u}{\partial x_{1}}\right)^{2}\left(x_{1}, 0\right) \mathrm{d} x_{1} \leqslant-\int_{0}^{2 \pi}\left(F\left(u\left(x_{1}, 0\right)\right)-F(\Psi(0))-\left(u\left(x_{1}, 0\right)-\Psi(0)\right) f(\Psi(0))\right) \mathrm{d} x_{1} \tag{14}
\end{equation*}
$$

However, by (11) and (12), given $\varepsilon_{1}>0$, there exists $M>0$ such that $\left|f^{\prime}(v)\right| \leqslant M$ for all v between $\Psi(0)$ and $u\left(x_{1}, 0\right), x_{1} \in S^{1}$. Thus we have, for all $x_{1} \in S^{1}$ and for all $\varepsilon>\varepsilon_{1}$,

$$
\begin{equation*}
\left|F\left(u\left(x_{1}, 0\right)\right)-F(\Psi(0))-\left(u\left(x_{1}, 0\right)-\Psi(0)\right) f(\Psi(0))\right| \leqslant M\left|u\left(x_{1}, 0\right)-\Psi(0)\right|^{2} . \tag{15}
\end{equation*}
$$

On the other hand the Poincaré inequality gives

$$
\begin{equation*}
\int_{0}^{2 \pi}\left(u\left(x_{1}, 0\right)-\Psi(0)\right)^{2} \mathrm{~d} x_{1} \leqslant 4 \pi^{2} \int_{0}^{2 \pi}\left(\frac{\partial u}{\partial x_{1}}\right)^{2}\left(x_{1}, 0\right) \mathrm{d} x_{1} \tag{16}
\end{equation*}
$$

We deduce from (14)-(16) that there exists $C>0$ such that for all $\varepsilon>\varepsilon_{1}$,

$$
\frac{\varepsilon^{2}}{2} \int_{0}^{2 \pi}\left(u\left(x_{1}, 0\right)-\Psi(0)\right)^{2} \mathrm{~d} x_{1} \leqslant C \int_{0}^{2 \pi}\left(u\left(x_{1}, 0\right)-\Psi(0)\right)^{2} \mathrm{~d} x_{1} .
$$

This inequality gives that there exists $\bar{\varepsilon}>0$ such that for $\varepsilon>\bar{\varepsilon}$ any solution of (2) verifies $\frac{\partial u}{\partial x_{1}}\left(x_{1}, 0\right)=0$, for all $x_{1} \in$ $[0,2 \pi]$. Let us prove that such a solution verifies in fact $\frac{\partial u}{\partial x_{1}}\left(x_{1}, x_{2}\right)=0$, for all $x_{1} \in[0,2 \pi]$ and for all $x_{2} \in[0,+\infty[$. As f is twice differentiable in $] 0,+\infty$ [, except at isolated points, we may argue as follows. By derivation of (2) we get

$$
\begin{equation*}
-\varepsilon^{2} \Delta \frac{\partial u}{\partial x_{1}}+f^{\prime}(u) \frac{\partial u}{\partial x_{1}}=0 \tag{17}
\end{equation*}
$$

Then we multiply this equation by $\frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}$ and we integrate on $S^{1} \times \mathbb{R}+$. We obtain

$$
\int_{0}^{+\infty} \int_{0}^{2 \pi} f^{\prime \prime}(u) \frac{\partial u}{\partial x_{2}}\left(\frac{\partial u}{\partial x_{1}}\right)^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}=0 .
$$

However, f is concave and u decreases with respect to x_{2}, so we have $\frac{\partial u}{\partial x_{1}}=0$ in $S^{1} \times \mathbb{R}+$.
Remark 1. For $N>2$, the positive solutions of (2) are radially symmetric and decreasing in $r=\left|\left(x_{2}, \ldots, x_{N}\right)\right|$. But our above proof does not work for x_{2} replaced by r. In this case we are unable to prove (10) because the equation for ψ is not the same one.

Acknowledgement

We thank Y. Ge for helpful discussions about this work.

References

[1] G. Alberti, L. Ambrosio, X. Cabré, On a long-standing conjecture of E. De Giorgi: old and recent results, Acta Appl. Math. 65 (2001) 9-33.
[2] L. Almeida, L. Damascelli, Y. Ge, A few symmetry results for nonlinear elliptic PDE on noncompact manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (3) (2002) 313-342.
[3] H. Berestycki, F. Hamel, R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J. 103 (3) (2000) 375-396.
[4] H. Berestycki, L. Nirenberg, On the method of moving plane and the sliding method, Bol. Soc. Bras. Mat. 22 (1991) 1-39.
[5] E.N. Dancer, New solutions of equations on \mathbb{R}^{n}, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) XXX (2001) 535-563.
[6] N. Ghoussoub, C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann. 311 (1998) 481-491.
[7] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^{n}, in: Mathematical Analysis and Applications, Part A, in: Adv. Math. Suppl. Studies, vol. 7A, Academic Press, New York, 1981, pp. 369-402.
[8] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, second ed., Springer-Verlag, Berlin, 1983.
[9] M.K. Kwong, L. Zhang, Uniqueness of the positive solution of $\Delta u+f(u)=0$ in an annulus, Differential Integral Equations 4 (1991) 583-599.

[^0]: E-mail addresses: allain@univ-paris12.fr (G. Allain), anne.beaulieu@univ-mlv.fr (A. Beaulieu).

