

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 345 (2007) 265-268

COMPTES RENDUS MATHEMATIQUE

http://france.elsevier.com/direct/CRASS1/

Algebraic Geometry

Brauer obstruction for a universal vector bundle

Vikraman Balaji^a, Indranil Biswas^b, Ofer Gabber^c, Donihakkalu S. Nagaraj^d

^a Chennai Mathematical Institute, Plot H1, SIPCOT IT Park, Padur, PO Siruseri 603103, India

^b School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

^c Institut des Hautes Études Scientifiques, Le Bois-Marie, 35, route de Chartres, 91440 Bures-sur-Yvette, France

^d The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India

Received 17 August 2006; accepted after revision 17 July 2007

Available online 21 August 2007

Presented by Gérard Laumon

Abstract

Let X be a smooth complex projective curve with genus(X) > 2, and let \mathcal{M} be the moduli space parametrizing isomorphism classes of stable vector bundles E over X of rank r with $\bigwedge^r E = \xi$, where ξ is a fixed line bundle. We prove that the Brauer group Br(\mathcal{M}) is $\mathbb{Z}/n\mathbb{Z}$, where $n = \text{g.c.d.}(r, \text{degree}(\xi))$. Moreover, Br(\mathcal{M}) is generated by the class of the projective bundle over \mathcal{M} of relative dimension r - 1 obtained by restricting the universal projective bundle over $X \times \mathcal{M}$ to a point of X. To cite this article: V. Balaji et al., C. R. Acad. Sci. Paris, Ser. I 345 (2007).

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Obstruction de Brauer pour un fibré vectoriel universel. Soit X une courbe projective lisse de genre g(X) > 2 et soit \mathcal{M} l'espace de modules paramétrant les fibrés vectoriels E stables sur X de rang r et ayant déterminant $\bigwedge^r E = \xi$, où ξ est un fibré en droites donné. Nous montrons que le groupe de Brauer Br(\mathcal{M}) est égale à $\mathbb{Z}/n\mathbb{Z}$, où $n = \text{pgcd}(r, \text{deg }\xi)$. De plus Br(\mathcal{M}) est engendré par la classe du fibré projectif sur \mathcal{M} de dimension relative r - 1, obtenu par restriction du fibré projectif universel sur $X \times \mathcal{M}$ en un point de X. *Pour citer cet article : V. Balaji et al., C. R. Acad. Sci. Paris, Ser. I 345 (2007).* © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Brauer groups of moduli spaces

Let X be a connected smooth projective curve defined over \mathbb{C} such that $g(X) := \text{genus}(X) \ge 2$. Fix an integer $r \ge 2$; if g(X) = 2, then take $r \ge 3$. Fix an algebraic line bundle ξ over X of degree d. Let $\mathcal{M}(r, \xi)$ denote the moduli space parametrizing all isomorphism classes of stable vector bundles E over X of rank r with $\bigwedge^r E \cong \xi$. For notational convenience the variety $\mathcal{M}(r, \xi)$ will simply be denoted by \mathcal{M} . There is a natural universal projective bundle over $X \times \mathcal{M}$ of relative dimension r - 1, which we will denote by \mathbb{P} . For any stable vector bundle $E \in \mathcal{M}$ and any point $x \in X$, the fiber of \mathbb{P} over $x \times \{E\}$ is canonically identified with $P(E_x)$, the variety of one dimensional subspaces of E_x . For any closed point $x \in X$, the restriction of \mathbb{P} to $\{x\} \times \mathcal{M}$ will be denoted by \mathbb{P}_x .

E-mail addresses: balaji@cmi.ac.in (V. Balaji), indranil@math.tifr.res.in (I. Biswas), gabber@ihes.fr (O. Gabber), dsn@imsc.res.in (D.S. Nagaraj).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2007.07.011

Let Br(\mathcal{M}) denote the *cohomological Brauer group* $H^2(\mathcal{M}_{et}, \mathbb{G}_m)$ of \mathcal{M} . Let $\beta \in Br(\mathcal{M})$ be the class of the projective bundle \mathbb{P}_x . Recall that Pic(\mathcal{M}) = NS(\mathcal{M}) = \mathbb{Z} by [4].

Remark 1.1. (i) The class β is the class of the gerbe which gives the obstruction to the existence of a universal vector bundle. For every étale morphism $e: U \to \mathcal{M}$ let \mathcal{G}_U be the category of vector bundles E on $X \times U$ which are stable of rank r and determinant ξ on the fibers of $X \times U \to U$ such that $f_E = e$; the morphisms in \mathcal{G}_U are the vector bundle isomorphisms. These categories are the fibers of a fibered category which has the structure of a \mathbb{G}_m gerbe over the étale site of \mathcal{M} . We have an equivalence from \mathcal{G} to the gerbe $b(\mathbb{P}_x)$ defined in [6, V4.8].

(ii) Under our conventions, the cohomology class associated to an Azumaya algebra of degree d on a scheme coincides with the class associated to the Brauer–Severi variety parametrizing rank d right ideals; this agrees with [6] and differs from [1].

Proposition 1.2. (a) The group Br(\mathcal{M}) is generated by β , (b) the variety \mathcal{M} is simply connected, and (c) the natural homomorphism Pic(\mathcal{M}) $\rightarrow H^2(\mathcal{M}, \mathbb{Z})$ is an isomorphism.

Proof. By [4], there is an open subset \mathbb{P}_{ξ}^{s} in a projective space together with a surjective morphism $f : \mathbb{P}_{\xi}^{s} \to \mathcal{M}$ satisfying the following condition: for any complex reduced variety *Y* and a vector bundle *E* on $X \times Y$, such that for all $y \in Y$, the restriction $E|_{X \times y}$ is a stable vector bundle of rank *r* with determinant ξ , the natural morphism $Y \to \mathcal{M}$ can be Zariski locally lifted to a morphism to \mathbb{P}_{ξ}^{s} . From [4, p. 89, Proposition 7.13] we have $\operatorname{Pic}(\mathbb{P}_{\xi}^{s}) = \mathbb{Z}$, so \mathbb{P}_{ξ}^{s} is the complement of a Zariski closed subset of codimension ≥ 2 in a projective space.

Since the projective bundle $\mathbb{P}_x \to \mathcal{M}$ pulled back to \mathbb{P}_x is associated to a vector bundle, we see that there is a vector bundle \mathcal{E} on $X \times \mathbb{P}_x$ such that for every $y \in \mathbb{P}_x$ the vector bundle $\mathcal{E}|_{X \times y}$ is stable of rank r and determinant ξ , and its isomorphism class corresponds to the image of y in \mathcal{M} . Hence there is a nonempty Zariski open subset U of \mathbb{P}_x and a commutative diagram of maps

On the other hand, for any projective bundle $\tilde{\mathcal{P}}$ over a connected regular scheme Z, by [5, p. 193], there is an exact sequence

$$\mathbb{Z} \cdot \operatorname{cl}(\widetilde{\mathcal{P}}) \longrightarrow \operatorname{Br}(Z) \longrightarrow \operatorname{Br}(\widetilde{\mathcal{P}}) \longrightarrow 0.$$
(1)

Hence the above commutative diagram, together with the facts that $Br(\mathbb{P}^s_{\xi}) = 0$ (since \mathbb{P}^s_{ξ} is the complement of a Zariski closed subset of codimension ≥ 2 in a projective space) and the pullback homomorphism $Br(\mathbb{P}_x) \to Br(U)$ is injective, prove part (a).

Part (a) implies that $Br(\mathcal{M})$ is a finite group. Hence part (c) follows using [7, p. 145, (8.7)].

Part (b) follows by applying π_1 to the above commutative diagram and observing that \mathbb{P}^s_{ξ} is simply connected, the homomorphism $\pi_1(U) \to \pi_1(\mathbb{P}_x)$ is surjective and $\pi_1(\mathbb{P}_x) \simeq \pi_1(\mathcal{M})$. \Box

Remark 1.3. From Proposition 1.2(c) it follows that $H^2(\mathcal{M}, \mathbb{Z}) = \mathbb{Z}$. Using the finiteness of Br(\mathcal{M}) together with the Kummer sequence and the comparison of classical and étale cohomology, it follows (cf. [7, p. 146, (8.9)]) that Br(\mathcal{M}) is identified with the torsion subgroup $H^3(\mathcal{M}, \mathbb{Z})_{tor}$ of $H^3(\mathcal{M}, \mathbb{Z})$.

Let $\mathcal{O}_X(1)$ be a very ample line bundle on X. Then there exists an integer m_0 such that for every integer $m \ge m_0$ and every semistable vector bundle V of rank r and degree d on X, the vector bundle $V(m) = V \otimes \mathcal{O}_X(m)$ is generated by its global sections, and furthermore, $h^1(V(m)) = 0$. Fix some $m \ge m_0$, and define $q = \dim H^0(X, V(m))$. Using the notation of [4], the universal bundle \mathbb{F} on $X \times R^s$ has a GL(q) linearization and the projectivization $P(\mathbb{F})$ descends to $X \times \mathcal{M}$, and the descended projective bundle is identified with \mathbb{P} ; see [4, pp. 61–62].

For a GL(q)-linearized line bundle L on R^s , by e(L) we will denote the integer that satisfies the following condition: the center $\mathbb{C}^* \subset \text{GL}(q)$ acts on L_y , $y \in R^s$, by the character $t \mapsto t^{e(L)}$.

Proposition 1.4. [4, p. 75, Proposition 5.1] Set n = g.c.d.(r, d). Let p be an integer. Then there exists a GL(q)-linearized line bundle L on \mathbb{R}^s such that e(L) = p if and only if p is a multiple of n.

Lemma 1.5. [1, p. 203, Proposition 4.4(ii)] For an everywhere nonzero vector bundle V on a scheme, consider the exterior power representation $PGL(V) \mapsto PGL(\bigwedge^m(V)), 0 \leq m \leq rank(V)$. Let β_V be the Brauer class of the projective bundle associated to a principal PGL(V)-bundle for the standard action on P(V). Then the Brauer class of the associated $PGL(\bigwedge^m V)$ -bundle is given by $m \cdot \beta_V$.

Proposition 1.6. If β is the Brauer class of \mathbb{P}_x in Br(\mathcal{M}), then $n \cdot \beta = 0$, where *n* is as in Proposition 1.4.

Proof. We will denote by $\bigwedge^n \mathbb{P}$ the projective bundle over $X \times \mathcal{M}$ associated to the PGL (r, \mathbb{C}) -bundle \mathbb{P} for the natural action of PGL (r, \mathbb{C}) on $P(\bigwedge^n \mathbb{C}^r)$. The restriction of $\bigwedge^n \mathbb{P}$ to $\{x\} \times \mathcal{M}$ will be denoted by $\bigwedge^n \mathbb{P}_x$.

In view of Lemma 1.5, we need to show that $\bigwedge^n \mathbb{P}_x$ is Zariski locally trivial on \mathcal{M} . It is enough to show that $\bigwedge^n \mathbb{P}$ is Zariski locally trivial on $X \times \mathcal{M}$. This is equivalent to showing that the equivariant vector bundle $\bigwedge^n \mathbb{F}$ on $X \times R^s$ descends to a vector bundle after being tensored by a suitable equivariant line bundle. Now by Proposition 1.4, there exists an equivariant line bundle L on R^s such that e(L) = n. Further, \mathbb{C}^* acts on $\bigwedge^n \mathbb{F}$ by $t \mapsto t^n$. Hence, the vector bundle $(\bigwedge^n \mathbb{F}) \otimes (p_{R^s})^*(L^*)$ has a trivial action of $\mathbb{C}^* \hookrightarrow GL(q)$, and consequently it descends to $X \times \mathcal{M}$. This implies that $n \cdot \beta = 0$. \Box

Proposition 1.7. *Let* 0 < m < n*. Then* $m \cdot \beta \neq 0$ *.*

Proof. Suppose that $m \cdot \beta = 0$. We will get a contradiction. By Lemma 1.5, if $m \cdot \beta = 0$, it follows that $\bigwedge^m \mathbb{P}_x$ is the projectivization of some vector bundle V on $x \times \mathcal{M} = \mathcal{M}$. This implies the equivariant vector bundle $\bigwedge^m \mathbb{F}_x$ on \mathbb{R}^s must be the pullback of V tensored with an equivariant line bundle on \mathbb{R}^s . Hence there is an equivariant line bundle L on \mathbb{R}^s with e(L) = m. Since 0 < m < n this is a contradiction (see Proposition 1.4). \Box

Propositions 1.2, 1.6 and 1.7 together give the following theorem:

Theorem 1.8. The Brauer group $Br(\mathcal{M}) = \mathbb{Z}/n\mathbb{Z}$. The Brauer group is generated by the Brauer class of \mathbb{P}_x .

The above theorem remains valid for g(X) = r = 2 using the explicit descriptions of \mathcal{M} in these cases [8].

2. Brauer group and stability

Let \overline{M} be an irreducible normal complex projective variety of positive dimension. Fix a very ample line bundle ζ on \overline{M} . A nonempty Zariski open subset U of \overline{M} will be called *big* if the complement $\overline{M} \setminus U$ is of codimension at least two. The smooth locus of \overline{M} , which is a big open subset, will be denoted by M. For any torsionfree coherent sheaf F defined on a big open subset $U \subset M$, the *degree* of F is defined to be the degree of F restricted to the general complete intersection curve obtained by intersecting hyperplanes on \overline{M} from the complete linear system $|\zeta|$.

Let *G* be a complex reductive group. A principal *G*-bundle E_G defined over a big open subset $U \subset M$ is called *stable* if for all triples of the form (U', P, σ) , where $U' \subset U$ is a big open subset of M, $P \subset G$ is a proper maximal parabolic subgroup, and $\sigma: U' \to E_G/P$ is a reduction of structure group of $E_G|_{U'}$ to *P*, the inequality degree $(\sigma^*T_{rel}) > 0$ holds, where T_{rel} is the relative tangent bundle for the natural projection $E_G/P \to U$; see [9,2,3]. A principal bundle defined over a big open subset is called a *rational principal bundle* (see [9,2]).

Now take $G = PGL(n, \mathbb{C})$. Let $E_{PGL(n,\mathbb{C})}$ be a principal $PGL(n, \mathbb{C})$ -bundle over a big open subset $U \subset M$. The projective bundle over U, of relative dimension n - 1, associated to $E_{PGL(n,\mathbb{C})}$ for the natural action of $PGL(n,\mathbb{C})$ on the projective space of lines in \mathbb{C}^n will be denoted by E.

Lemma 2.1. If the order of E in Br(M) is n, then the principal $PGL(n, \mathbb{C})$ -bundle $E_{PGL(n,\mathbb{C})}$ is stable. In fact, E does not admit any reduction of structure group to any proper parabolic subgroup of $PGL(n, \mathbb{C})$ over any big open subset of M.

Proof. Any maximal parabolic subgroup of $PGL(n, \mathbb{C})$ preserves a proper linear subspace of \mathbb{CP}^{n-1} . So a reduction of structure group of $E_{PGL(n,\mathbb{C})}$ to a maximal parabolic subgroup is given by a linear subbundle of *E*. Let

$$\mathbb{L}_{U'} \subset E|_{U'} \tag{2}$$

be a linear subbundle over U' of relative dimension d, where $d \in [0, n-2]$.

Let E_d be the projective bundle over U associated to $E_{PGL(n,\mathbb{C})}$ for the natural action of $PGL(n,\mathbb{C})$ on the projective space $P(\bigwedge^{d+1}\mathbb{C}^n)$ of lines in $\bigwedge^{d+1}\mathbb{C}^n$. Using the natural embedding of the Grassmannian Gr(d+1,n) in $P(\bigwedge^{d+1}\mathbb{C}^n)$ we see that the Grassmann bundle over U parametrizing d dimensional linear subspaces in the fibers of the projective bundle E is embedded in E_d . Therefore, the subbundle $\mathbb{L}_{U'}$ in (2) gives a section of E_d over U'.

Note that Br(U') = Br(M) = Br(U) as U and U' are both big open subsets of M. Since the order of the class of E in Br(U') is n, and d < n - 1, from Lemma 1.5 we know that the class of E_d in Br(U') is nonzero. This is in contradiction with the fact that we have a section of E_d over U'. Therefore, a subbundle as in (2) cannot exist. This completes the proof of the lemma. \Box

Recall that under the assumptions of Section 1, \mathcal{M} is the smooth locus of a normal projective variety. From Theorem 1.8 and Lemma 2.1 it follows that the projective bundle \mathbb{P}_x over \mathcal{M} is stable provided the degree d is a multiple of the rank r.

References

- M. Artin, Brauer–Severi varieties, in: Brauer Groups in Ring Theory and Algebraic Geometry, Lecture Notes in Math., vol. 917, Springer, Berlin–New York, 1982, pp. 194–210.
- [2] V. Balaji, Principal bundles on projective varieties and the Donaldson–Uhlenbeck compactification, J. Differential Geom. 76 (2007) 351–398.
- [3] I. Biswas, A.J. Parameswaran, S. Subramanian, Monodromy group for a strongly semistable principal bundle over a curve, Duke Math. J. 132 (2006) 1–48.
- [4] J.-M. Drezet, M.S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989) 53–94.
- [5] O. Gabber, Some theorems on Azumaya algebras, in: The Brauer Group, Lecture Notes in Math., vol. 844, Springer, Berlin–New York, 1981, pp. 129–209.
- [6] J. Giraud, Cohomologie non abélienne, Die Grundlehren der Mathematischen Wissenschaften, Band 179, Springer-Verlag, Berlin–New York, 1971.
- [7] A. Grothendieck, Le groupe de Brauer. III. Exemples et compléments, in: Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, pp. 88–188.
- [8] M.S. Narasimhan, S. Ramanan, Vector bundles on curves, in: Algebraic Geometry, Int. Colloq., T.I.F.R., Bombay, 1968, Oxford Univ. Press, London, 1969, pp. 335–346.
- [9] A. Ramanathan, Moduli for principal bundles over algebraic curves: I, Proc. Ind. Acad. Sci. Math. Sci. 106 (1996) 301-328.