Algebraic Geometry

Brauer obstruction for a universal vector bundle

Vikraman Balaji ${ }^{\text {a }}$, Indranil Biswas ${ }^{\text {b }}$, Ofer Gabber ${ }^{\text {c }}$, Donihakkalu S. Nagaraj ${ }^{\text {d }}$
${ }^{\text {a }}$ Chennai Mathematical Institute, Plot H1, SIPCOT IT Park, Padur, PO Siruseri 603103, India
b School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
${ }^{\text {c }}$ Institut des Hautes Études Scientifiques, Le Bois-Marie, 35, route de Chartres, 91440 Bures-sur-Yvette, France
${ }^{\mathrm{d}}$ The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India

Received 17 August 2006; accepted after revision 17 July 2007
Available online 21 August 2007
Presented by Gérard Laumon

Abstract

Let X be a smooth complex projective curve with genus $(X)>2$, and let \mathcal{M} be the moduli space parametrizing isomorphism classes of stable vector bundles E over X of rank r with $\bigwedge^{r} E=\xi$, where ξ is a fixed line bundle. We prove that the Brauer group $\operatorname{Br}(\mathcal{M})$ is $\mathbb{Z} / n \mathbb{Z}$, where $n=$ g.c.d. $(r$, degree (ξ)). Moreover, $\operatorname{Br}(\mathcal{M})$ is generated by the class of the projective bundle over \mathcal{M} of relative dimension $r-1$ obtained by restricting the universal projective bundle over $X \times \mathcal{M}$ to a point of X. To cite this article: V. Balaji et al., C. R. Acad. Sci. Paris, Ser. I 345 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Obstruction de Brauer pour un fibré vectoriel universel. Soit X une courbe projective lisse de genre $g(X)>2$ et soit \mathcal{M} l'espace de modules paramétrant les fibrés vectoriels E stables sur X de rang r et ayant déterminant $\bigwedge^{r} E=\xi$, où ξ est un fibré en droites donné. Nous montrons que le groupe de $\operatorname{Brauer} \operatorname{Br}(\mathcal{M})$ est égale à $\mathbb{Z} / n \mathbb{Z}$, où $n=\operatorname{pgcd}(r, \operatorname{deg} \xi)$. De plus $\operatorname{Br}(\mathcal{M})$ est engendré par la classe du fibré projectif sur \mathcal{M} de dimension relative $r-1$, obtenu par restriction du fibré projectif universel sur $X \times \mathcal{M}$ en un point de X. Pour citer cet article : V. Balaji et al., C. R. Acad. Sci. Paris, Ser. I 345 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Brauer groups of moduli spaces

Let X be a connected smooth projective curve defined over \mathbb{C} such that $g(X):=\operatorname{genus}(X) \geqslant 2$. Fix an integer $r \geqslant 2$; if $g(X)=2$, then take $r \geqslant 3$. Fix an algebraic line bundle ξ over X of degree d. Let $\mathcal{M}(r, \xi)$ denote the moduli space parametrizing all isomorphism classes of stable vector bundles E over X of rank r with $\bigwedge^{r} E \cong \xi$. For notational convenience the variety $\mathcal{M}(r, \xi)$ will simply be denoted by \mathcal{M}. There is a natural universal projective bundle over $X \times \mathcal{M}$ of relative dimension $r-1$, which we will denote by \mathbb{P}. For any stable vector bundle $E \in \mathcal{M}$ and any point $x \in X$, the fiber of \mathbb{P} over $x \times\{E\}$ is canonically identified with $P\left(E_{x}\right)$, the variety of one dimensional subspaces of E_{x}. For any closed point $x \in X$, the restriction of \mathbb{P} to $\{x\} \times \mathcal{M}$ will be denoted by \mathbb{P}_{x}.

[^0]Let $\operatorname{Br}(\mathcal{M})$ denote the cohomological Brauer group $H^{2}\left(\mathcal{M}_{e t}, \mathbb{G}_{m}\right)$ of \mathcal{M}. Let $\beta \in \operatorname{Br}(\mathcal{M})$ be the class of the projective bundle \mathbb{P}_{x}. Recall that $\operatorname{Pic}(\mathcal{M})=\mathrm{NS}(\mathcal{M})=\mathbb{Z}$ by [4].

Remark 1.1. (i) The class β is the class of the gerbe which gives the obstruction to the existence of a universal vector bundle. For every étale morphism $e: U \rightarrow \mathcal{M}$ let \mathcal{G}_{U} be the category of vector bundles E on $X \times U$ which are stable of rank r and determinant ξ on the fibers of $X \times U \rightarrow U$ such that $f_{E}=e$; the morphisms in \mathcal{G}_{U} are the vector bundle isomorphisms. These categories are the fibers of a fibered category which has the structure of a \mathbb{G}_{m} gerbe over the étale site of \mathcal{M}. We have an equivalence from \mathcal{G} to the gerbe $b\left(\mathbb{P}_{x}\right)$ defined in [6, V4.8].
(ii) Under our conventions, the cohomology class associated to an Azumaya algebra of degree d on a scheme coincides with the class associated to the Brauer-Severi variety parametrizing rank d right ideals; this agrees with [6] and differs from [1].

Proposition 1.2. (a) The group $\operatorname{Br}(\mathcal{M})$ is generated by β, (b) the variety \mathcal{M} is simply connected, and (c) the natural homomorphism $\operatorname{Pic}(\mathcal{M}) \rightarrow H^{2}(\mathcal{M}, \mathbb{Z})$ is an isomorphism.

Proof. By [4], there is an open subset \mathbb{P}_{ξ}^{s} in a projective space together with a surjective morphism $f: \mathbb{P}_{\xi}^{s} \rightarrow \mathcal{M}$ satisfying the following condition: for any complex reduced variety Y and a vector bundle E on $X \times Y$, such that for all $y \in Y$, the restriction $\left.E\right|_{X \times y}$ is a stable vector bundle of rank r with determinant ξ, the natural morphism $Y \rightarrow \mathcal{M}$ can be Zariski locally lifted to a morphism to \mathbb{P}_{ξ}^{s}. From [4, p. 89, Proposition 7.13] we have $\operatorname{Pic}\left(\mathbb{P}_{\xi}^{s}\right)=\mathbb{Z}$, so \mathbb{P}_{ξ}^{s} is the complement of a Zariski closed subset of codimension $\geqslant 2$ in a projective space.

Since the projective bundle $\mathbb{P}_{x} \rightarrow \mathcal{M}$ pulled back to \mathbb{P}_{x} is associated to a vector bundle, we see that there is a vector bundle \mathcal{E} on $X \times \mathbb{P}_{x}$ such that for every $y \in \mathbb{P}_{x}$ the vector bundle $\left.\mathcal{E}\right|_{X \times y}$ is stable of rank r and determinant ξ, and its isomorphism class corresponds to the image of y in \mathcal{M}. Hence there is a nonempty Zariski open subset U of \mathbb{P}_{x} and a commutative diagram of maps

On the other hand, for any projective bundle $\widetilde{\mathcal{P}}$ over a connected regular scheme Z, by [5, p. 193], there is an exact sequence

$$
\begin{equation*}
\mathbb{Z} \cdot \operatorname{cl}(\widetilde{\mathcal{P}}) \longrightarrow \operatorname{Br}(Z) \longrightarrow \operatorname{Br}(\widetilde{\mathcal{P}}) \longrightarrow 0 \tag{1}
\end{equation*}
$$

Hence the above commutative diagram, together with the facts that $\operatorname{Br}\left(\mathbb{P}_{\xi}^{s}\right)=0$ (since \mathbb{P}_{ξ}^{s} is the complement of a Zariski closed subset of codimension $\geqslant 2$ in a projective space) and the pullback homomorphism $\operatorname{Br}\left(\mathbb{P}_{x}\right) \rightarrow \operatorname{Br}(U)$ is injective, prove part (a).

Part (a) implies that $\operatorname{Br}(\mathcal{M})$ is a finite group. Hence part (c) follows using [7, p. 145, (8.7)].
Part (b) follows by applying π_{1} to the above commutative diagram and observing that \mathbb{P}_{ξ}^{s} is simply connected, the homomorphism $\pi_{1}(U) \rightarrow \pi_{1}\left(\mathbb{P}_{x}\right)$ is surjective and $\pi_{1}\left(\mathbb{P}_{x}\right) \simeq \pi_{1}(\mathcal{M})$.

Remark 1.3. From Proposition 1.2(c) it follows that $H^{2}(\mathcal{M}, \mathbb{Z})=\mathbb{Z}$. Using the finiteness of $\operatorname{Br}(\mathcal{M})$ together with the Kummer sequence and the comparison of classical and étale cohomology, it follows (cf. [7, p. 146, (8.9)]) that $\operatorname{Br}(\mathcal{M})$ is identified with the torsion subgroup $H^{3}(\mathcal{M}, \mathbb{Z})_{\text {tor }}$ of $H^{3}(\mathcal{M}, \mathbb{Z})$.

Let $\mathcal{O}_{X}(1)$ be a very ample line bundle on X. Then there exists an integer m_{0} such that for every integer $m \geqslant m_{0}$ and every semistable vector bundle V of rank r and degree d on X, the vector bundle $V(m)=V \otimes \mathcal{O}_{X}(m)$ is generated by its global sections, and furthermore, $h^{1}(V(m))=0$. Fix some $m \geqslant m_{0}$, and define $q=\operatorname{dim} H^{0}(X, V(m))$. Using the notation of [4], the universal bundle \mathbb{F} on $X \times R^{s}$ has a GL (q) linearization and the projectivization $P(\mathbb{F})$ descends to $X \times \mathcal{M}$, and the descended projective bundle is identified with \mathbb{P}; see [4, pp. 61-62].

For a GL (q)-linearized line bundle L on R^{s}, by $e(L)$ we will denote the integer that satisfies the following condition: the center $\mathbb{C}^{*} \subset \mathrm{GL}(q)$ acts on $L_{y}, y \in R^{s}$, by the character $t \mapsto t^{e(L)}$.

Proposition 1.4. [4, p. 75, Proposition 5.1] Set $n=$ g.c.d. (r, d). Let p be an integer. Then there exists a GL(q)linearized line bundle L on R^{s} such that $e(L)=p$ if and only if p is a multiple of n.

Lemma 1.5. [1, p. 203, Proposition 4.4(ii)] For an everywhere nonzero vector bundle V on a scheme, consider the exterior power representation $\operatorname{PGL}(V) \mapsto \operatorname{PGL}\left(\bigwedge^{m}(V)\right), 0 \leqslant m \leqslant \operatorname{rank}(V)$. Let β_{V} be the Brauer class of the projective bundle associated to a principal $\operatorname{PGL}(V)$-bundle for the standard action on $P(V)$. Then the Brauer class of the associated $\operatorname{PGL}\left(\bigwedge^{m} V\right)$-bundle is given by $m \cdot \beta_{V}$.

Proposition 1.6. If β is the Brauer class of \mathbb{P}_{x} in $\operatorname{Br}(\mathcal{M})$, then $n \cdot \beta=0$, where n is as in Proposition 1.4.
Proof. We will denote by $\bigwedge^{n} \mathbb{P}$ the projective bundle over $X \times \mathcal{M}$ associated to the $\operatorname{PGL}(r, \mathbb{C})$-bundle \mathbb{P} for the natural action of $\operatorname{PGL}(r, \mathbb{C})$ on $P\left(\bigwedge^{n} \mathbb{C}^{r}\right)$. The restriction of $\bigwedge^{n} \mathbb{P}$ to $\{x\} \times \mathcal{M}$ will be denoted by $\bigwedge^{n} \mathbb{P}_{x}$.

In view of Lemma 1.5, we need to show that $\bigwedge^{n} \mathbb{P}_{x}$ is Zariski locally trivial on \mathcal{M}. It is enough to show that $\bigwedge^{n} \mathbb{P}$ is Zariski locally trivial on $X \times \mathcal{M}$. This is equivalent to showing that the equivariant vector bundle $\bigwedge^{n} \mathbb{F}$ on $X \times R^{s}$ descends to a vector bundle after being tensored by a suitable equivariant line bundle. Now by Proposition 1.4 , there exists an equivariant line bundle L on R^{s} such that $e(L)=n$. Further, \mathbb{C}^{*} acts on $\bigwedge^{n} \mathbb{F}$ by $t \mapsto t^{n}$. Hence, the vector bundle $\left(\bigwedge^{n} \mathbb{F}\right) \otimes\left(p_{R^{s}}\right)^{*}\left(L^{*}\right)$ has a trivial action of $\mathbb{C}^{*} \hookrightarrow \operatorname{GL}(q)$, and consequently it descends to $X \times \mathcal{M}$. This implies that $n \cdot \beta=0$.

Proposition 1.7. Let $0<m<n$. Then $m \cdot \beta \neq 0$.
Proof. Suppose that $m \cdot \beta=0$. We will get a contradiction. By Lemma 1.5, if $m \cdot \beta=0$, it follows that $\bigwedge^{m} \mathbb{P}_{x}$ is the projectivization of some vector bundle V on $x \times \mathcal{M}=\mathcal{M}$. This implies the equivariant vector bundle $\bigwedge^{m} \mathbb{F}_{x}$ on R^{s} must be the pullback of V tensored with an equivariant line bundle on R^{s}. Hence there is an equivariant line bundle L on R^{s} with $e(L)=m$. Since $0<m<n$ this is a contradiction (see Proposition 1.4).

Propositions 1.2, 1.6 and 1.7 together give the following theorem:
Theorem 1.8. The Brauer group $\operatorname{Br}(\mathcal{M})=\mathbb{Z} / n \mathbb{Z}$. The Brauer group is generated by the Brauer class of \mathbb{P}_{x}.
The above theorem remains valid for $g(X)=r=2$ using the explicit descriptions of \mathcal{M} in these cases [8].

2. Brauer group and stability

Let \bar{M} be an irreducible normal complex projective variety of positive dimension. Fix a very ample line bundle ζ on \bar{M}. A nonempty Zariski open subset U of \bar{M} will be called big if the complement $\bar{M} \backslash U$ is of codimension at least two. The smooth locus of \bar{M}, which is a big open subset, will be denoted by M. For any torsionfree coherent sheaf F defined on a big open subset $U \subset M$, the degree of F is defined to be the degree of F restricted to the general complete intersection curve obtained by intersecting hyperplanes on \bar{M} from the complete linear system $|\zeta|$.

Let G be a complex reductive group. A principal G-bundle E_{G} defined over a big open subset $U \subset M$ is called stable if for all triples of the form $\left(U^{\prime}, P, \sigma\right)$, where $U^{\prime} \subset U$ is a big open subset of $M, P \subset G$ is a proper maximal parabolic subgroup, and $\sigma: U^{\prime} \rightarrow E_{G} / P$ is a reduction of structure group of $\left.E_{G}\right|_{U^{\prime}}$ to P, the inequality degree $\left(\sigma^{*} T_{\text {rel }}\right)>0$ holds, where $T_{\text {rel }}$ is the relative tangent bundle for the natural projection $E_{G} / P \rightarrow U$; see [9,2,3]. A principal bundle defined over a big open subset is called a rational principal bundle (see [9,2]).

Now take $G=\operatorname{PGL}(n, \mathbb{C})$. Let $E_{\operatorname{PGL}(n, \mathbb{C})}$ be a principal $\operatorname{PGL}(n, \mathbb{C})$-bundle over a big open subset $U \subset M$. The projective bundle over U, of relative dimension $n-1$, associated to $E_{\operatorname{PGL}(n, \mathbb{C})}$ for the natural action of $\operatorname{PGL}(n, \mathbb{C})$ on the projective space of lines in \mathbb{C}^{n} will be denoted by E.

Lemma 2.1. If the order of E in $\operatorname{Br}(M)$ is n, then the principal $\operatorname{PGL}(n, \mathbb{C})$-bundle $E_{\operatorname{PGL}(n, \mathbb{C})}$ is stable. In fact, E does not admit any reduction of structure group to any proper parabolic subgroup of $\operatorname{PGL}(n, \mathbb{C})$ over any big open subset of M.

Proof. Any maximal parabolic subgroup of $\operatorname{PGL}(n, \mathbb{C})$ preserves a proper linear subspace of $\mathbb{C P}^{n-1}$. So a reduction of structure group of $E_{\mathrm{PGL}(n, \mathbb{C})}$ to a maximal parabolic subgroup is given by a linear subbundle of E. Let

$$
\begin{equation*}
\left.\mathbb{L}_{U^{\prime}} \subset E\right|_{U^{\prime}} \tag{2}
\end{equation*}
$$

be a linear subbundle over U^{\prime} of relative dimension d, where $d \in[0, n-2]$.
Let E_{d} be the projective bundle over U associated to $E_{\mathrm{PGL}(n, \mathbb{C})}$ for the natural action of $\operatorname{PGL}(n, \mathbb{C})$ on the projective space $P\left(\bigwedge^{d+1} \mathbb{C}^{n}\right)$ of lines in $\bigwedge^{d+1} \mathbb{C}^{n}$. Using the natural embedding of the Grassmannian $\operatorname{Gr}(d+1, n)$ in $P\left(\bigwedge^{d+1} \mathbb{C}^{n}\right)$ we see that the Grassmann bundle over U parametrizing d dimensional linear subspaces in the fibers of the projective bundle E is embedded in E_{d}. Therefore, the subbundle $\mathbb{L}_{U^{\prime}}$ in (2) gives a section of E_{d} over U^{\prime}.

Note that $\operatorname{Br}\left(U^{\prime}\right)=\operatorname{Br}(M)=\operatorname{Br}(U)$ as U and U^{\prime} are both big open subsets of M. Since the order of the class of E in $\operatorname{Br}\left(U^{\prime}\right)$ is n, and $d<n-1$, from Lemma 1.5 we know that the class of E_{d} in $\operatorname{Br}\left(U^{\prime}\right)$ is nonzero. This is in contradiction with the fact that we have a section of E_{d} over U^{\prime}. Therefore, a subbundle as in (2) cannot exist. This completes the proof of the lemma.

Recall that under the assumptions of Section $1, \mathcal{M}$ is the smooth locus of a normal projective variety. From Theorem 1.8 and Lemma 2.1 it follows that the projective bundle \mathbb{P}_{x} over \mathcal{M} is stable provided the degree d is a multiple of the rank r.

References

[1] M. Artin, Brauer-Severi varieties, in: Brauer Groups in Ring Theory and Algebraic Geometry, Lecture Notes in Math., vol. 917, Springer, Berlin-New York, 1982, pp. 194-210.
[2] V. Balaji, Principal bundles on projective varieties and the Donaldson-Uhlenbeck compactification, J. Differential Geom. 76 (2007) $351-398$.
[3] I. Biswas, A.J. Parameswaran, S. Subramanian, Monodromy group for a strongly semistable principal bundle over a curve, Duke Math. J. 132 (2006) 1-48.
[4] J.-M. Drezet, M.S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989) 53-94.
[5] O. Gabber, Some theorems on Azumaya algebras, in: The Brauer Group, Lecture Notes in Math., vol. 844, Springer, Berlin-New York, 1981, pp. 129-209.
[6] J. Giraud, Cohomologie non abélienne, Die Grundlehren der Mathematischen Wissenschaften, Band 179, Springer-Verlag, Berlin-New York, 1971.
[7] A. Grothendieck, Le groupe de Brauer. III. Exemples et compléments, in: Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, pp. 88-188.
[8] M.S. Narasimhan, S. Ramanan, Vector bundles on curves, in: Algebraic Geometry, Int. Colloq., T.I.F.R., Bombay, 1968, Oxford Univ. Press, London, 1969, pp. 335-346.
[9] A. Ramanathan, Moduli for principal bundles over algebraic curves: I, Proc. Ind. Acad. Sci. Math. Sci. 106 (1996) $301-328$.

[^0]: E-mail addresses: balaji@cmi.ac.in (V. Balaji), indranil@math.tifr.res.in (I. Biswas), gabber@ihes.fr (O. Gabber), dsn@imsc.res.in (D.S. Nagaraj).

 1631-073X/\$ - see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 doi:10.1016/j.crma.2007.07.011

